Indian Journal of Anaesthesia  
About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions
Home | Login  | Users Online: 1377  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size    




 
REVIEW ARTICLE
Year : 2009  |  Volume : 53  |  Issue : 3  |  Page : 270-280 Table of Contents     

Clonidine In Paediatrics - A Review


1 Asst. Professor, Department of Anaesthesiology and Critical Care, Christian Medical College, Vellore, Tamil Nadu- 6320043, India
2 Professor, Consultant Anaesthesiologist, Bangalore Baptist Hospital, Bangalore, Karnataka- 560024, India

Date of Web Publication3-Mar-2010

Correspondence Address:
Sujatha Basker
Department of Anaesthesiology and Critical Care, Christian Medical College, Vellore, Tamil Nadu. 632004
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


PMID: 20640134

Rights and PermissionsRights and Permissions
 

Clonidine, an alpha-2 agonist is a known antihypertensive agent. Because of its sedative and analgesic effects, it is gaining popularity in anaesthesiology. It can be used to premedicate children, as an adjuvant to regional and general anaesthesia and it has several other applications in paediatric anaesthesia. It has also found use in the paediatric intensive care as a sedative, analgesic and to ensure haemodynamic stability. As in the case ol'any other anaesthetic drug, its use has to be vigilantly monitored.

Keywords: Clonidine, Paediatric Anaesthesia, Analgesia, Premedication


How to cite this article:
Basker S, Singh G, Jacob R. Clonidine In Paediatrics - A Review. Indian J Anaesth 2009;53:270-80

How to cite this URL:
Basker S, Singh G, Jacob R. Clonidine In Paediatrics - A Review. Indian J Anaesth [serial online] 2009 [cited 2017 Sep 25];53:270-80. Available from: http://www.ijaweb.org/text.asp?2009/53/3/270/60290


   Introduction Top


Clonidine is a mixed alpha-1 and alpha-2 adrenoceptor agonist with a predominant alpha-2 ac­tion. Traditionally, it has been used as an antihyperten­sive agent since the late sixties. Its primary effect is sympatholysis and it reduces peripheral norepineph­rine release by stimulation of the prejunctional inhibi­tory alpha-2 adrenoceptors. Further uses based on its sedative, anxiolytic and analgesic properties are being developed [1] .

Clonidine is N-(2,6 dichlorophenyl)-4,5-dihydro1H- imidazol-2-amine [Figure 1] with a formula of C 9 H 9 C1 2 N 3.

Clonidine is rapidly absorbed after oral administration. It reaches a peak plasma concentration within 60-90 minutes. The bioavailability of the drug is about 75-95%. About 20-40% of the drug is bound to pro­tein. 50% ofthe drug is metabolized in the liver to inac­tive metabolites which are excreted in the urine and the half life is about 12-33 hours. As clonidine is lipid soluble, it penetrates the blood-brain harrier to reach the hypothalamus and medulla. It does not require trans­formation into another substance prior to its action [2] .

Clearance ol'clonidine in neonates is about one-third of that described in adults due to immature elimi­nation pathways and it reaches about 82% of adult rate by one year ol'age. Hence maintenance dosing which is a function ol'clearance should be decreased in neo­nates and infants when using a target concentration ap­proach [3] .

Rectal administration of 2.5 mcg.kg-1 of clonidine in children, approximately 20 minutes before induction of anaesthesia, achieves a plasma concentration within the range known to be clinically effective in adults [4] .

Mechanism of action:

Alpha-2 adrenergic agonists produce clinical ef­fects by binding to alpha-2 receptors of which there are 3 subtypes: alpha-2a, alpha-2b and alpha-2c. Al­pha-2a receptors mediate sedation, analgesia and sympatholysis. Alpha-2h receptors mediate vasocon­striction and possibly anti-shivering mechanisms. The startle response reflects activation of alpha-2c recep­tors [5] and it is the response olmind and body to a sud­den unexpected stimulus, such as a flash of light, a loud noise (acoustic startle reflex), or a quick movement near the face. In human beings, the reaction includes physi­cal movement away from the stimulus, a contraction of the muscles of the arms and legs, blinking and it also includes blood pressure, respiration, and breathing changes [6] . Clonidine is a centrally acting selective par­tial adrenergic agonist (alpha-2: alpha-1=220:1).

Alpha-2 receptors are found densely in the pon­tine locus coeruleus which is an important source of sympathetic nervous system innervation ofthe forebrain and a vital modulator olvi6lance. The sedative effects evoked by alpha-2 agonists most likely reflect inhibi­tion of this nucleus.

Clonidine also stimulates alpha-2 adrenergic in­hibitory neurons in the medullary vasomotor centre. As a result, there is a decrease in the sympathetic nervous system outflow from the central nervous system (CNS) to the peripheral tissues. This causes central and pe­ripheral attenuation of sympathetic outflow and central activation of nonadrenergic imidazoline preferring, re­ceptors. Decreased sympathetic nervous system ac­tivity is manifested as peripheral vasodilatation and a decrease in systolic blood pressure, heart rate and car­diac output [7],[8],[9] . The ability of clonidine to modify the potassium channels in the CNS and thereby hyperpo­larize the cell membranes may be the mechanism for profound decrease in anaesthetic requirements pro­duced by clonidine.

Neuraxial placement ofclonidine inhibits spinal sub­stance P release and nociceptive neuron firing produced by the noxious stimulation. Alpha-2 afferent terminals are situated centrally and peripherally, in the superficial lami­nae ofthe spinal cord and several brain stem nuclei. This suggests that clonidine's analgesic effects are more pro­nounced alter neuraxial administration [10] .

Clonidine synchronously decreases the cold-re­sponse threshold while slightly increasing the sweating threshold [11],[12] thus suggesting, that it acts on the central thermoregulatory system rather than preventing shiver­ing peripherally [13] .

Adverse effects:

Administration of clonidine may be accompanied by drowsiness, dry mouth, bradycardia, orthostatic hypotension and impotence. Abrupt withdrawal ofthe drug could lead to rebound hypertension resulting in a hypertensive crisis. Hence clonidine should be contin­ued throughout the perioperative period. Clonidine may increase blood glucose concentration by inhibiting in­sulin release [14] .

Drug interactions

Tricyclic antidepressant drugs and presumably phenothiazines and butyrophenones interfere with the action of clonidine. Although administration of a butyrophenone (e.g droperidol) to a patient taking clonidine, guanabenz, or guanfacine chronically could theoretically precipitate a hypertensive crisis, none has been reported. Acute clonidine or dexmedetomidine administration decreases anaesthetic requirements by 40% to 60% and chronic administration decreases re­quirements by 10% to 20% [15],[16],[17] .

Available forms:

Clonidine is available as tablets, injections and transderm al patches. The various routes and doses are given in [Table 1].[Additional file 1]

Antagonist:

The adverse clinical effects of clonidine and dexmedetomidine can be readily reversed with the spe­cific antagonist atipamezole[30].

Clinical applications:

As a premedicant:

Clonidine in doses of 4 mcg.kg -1 orally or intra­nasally and in doses of 5 mcg.kg -1 rectally provides adequate sedation. Routine atropine administration along with clonidine negates the adverse effects like brady­cardia and hypotension. In a study by Almenrader et al, it was observed that the onset ofsedation was much faster with midazolam (30+/-13/min) as compared to clonidine (38.5+/-14.6 min) but the quality ofseda­tion, acceptance of steal induction and parental satis­faction were better with clonidine than midazolam[19],[21]. Clonidine has been proven to resolve agitation and hal­lucination produced by midazolam[18] .

The quality ofsedation produced by alpha-2 agonists differs from sedation produced by drugs that act on GABA receptors[31] such as midazolam. Clonidine produces sedation by decreasing the sympathetic ner­vous system activity and the level ofarousal. The result is a calm patient who can be easily aroused to full con­sciousness. Drugs that activate GABA receptors pro­duce a clouding of consciousness and can cause para­doxical agitation as well as tolerance or dependence.

Clonidine is devoid of respiratory depressant ac­tion and lacks the negative effects on cognition, memory and behaviour as seen with midazolam. Thus it may be substituted for premedication [32],[33] . The taste ofclonidine is much better than midazolam [21] .Intranasal administra­tion produces nasal burn ine and it offers no advan­tage over the oral route .It is also reported that the onset ofaction is faster with the oral administration than with intranasal administration [19] . Oral clonidine with at­ropine can also be recommended to sedate outpa­tients [34] .

Jatti et al concluded that clonidine produces good sedation and causes less effect on psychomotor func­tions and therefore it can be used as a premedicant in children [34] . Oral clonidine attenuated the hyperglyce­mic response, probably by inhibiting the surgical stress-induced release of catecholamines and cortisol [35] . In doses of 4 mcg/kg oral clonidine blunted the increase in heart rate after intravenous atropine in awake chil­dren, although clonidine 2 mcg/14 did not. A larger dose of atropine was required to increase the heart rate by 20 beats/min in children who had received 4 mcg/kg of clonidine [36] . It does not affect the preoperative gastric fluid pH and volume in children [37] .

Clonidine decreases postoperative oxygen con­sumption and adrenergic stress response. Despite dose dependent adverse effects such as hypotension, seda­tion and idiosyncratic adverse effects such as brady­cardia, clonidine does not induce profound respiratory depression. It mildly potentiates opiate-induced respi­ratory depression [38],[39],[40],[41] . Rectal premedication with clonidine was associated with a significant reduction of pain in the early postoperative period as compared to midazolam and was also associated with moderately increased sedation during the first 24 hours postoperatively. The sedative effect ofclonidine is in agreement with the unambiguous finding oft parental preference for a calm and sedated child during the first 24 hours postoperatively [23] . Shiga et al observed that oral clonidine premedication does not alter the efficacy of a simulated epidural test dose containing epinephrine or isoproterenol [42].

As an adjuvant to regional techniques:

Physiology in newborn and infants differ from older children and adults because oftheir narrow therapeutic window and increased incidence of toxicity. Some of the documented complications ofcaudal are by the lo­cal anaesthetics and/or their additives. Inadvertent in­travasation of bupivacaine has serious CVS and CNS toxicity. Enantiomers like ropivacaine and levobupivacaine are safer and their duration of action can be prolonged by adjuvants like clonidine and ketamine [43],[44],[45],[46] . The incidence of'side effects are lower with clonidine as an adj avant when compared to mor­phine given epidurally [47],[48] . Epidural bupivaeaine with clonidine as a patient controlled epidural analgesia in children and adolescents following extensive spinal sur­gery should be encouraged due to the low incidence of side effects like postoperative nausea and vomiting (PONV) [27] . Addition ofclonidine or ketamine for con­tinuous epidural infusion ofropivacaine following lower limb surgeries provides adequate analgesia. It also en­ables early diagnosis ofcompartmental syndrome, as the increase in requirement of analgesics precede other clinical symptoms by an average of 7.3 hours [49] .

A continuous in fusion of 0.2% ropivacaine 0.4 mg/kg/hour with clonidine 0.12 mcg/kg/hour through a sci­atic nerve catheter offered complete pain relief in a three year old boy who had a subtotal amputation of his foot [28] . In a case of herpetic neuralgia refractory to medical therapy, paravertebral nerve block with a cath­eter inserted at T2-3 level using 19 nil of 0.5% bupivacaine with 150 mcg ofclonidine every 48 hours for three weeks in a pediatric intensive care unit was helpful [29] . A combination of S(+) enantiomer of ketamine 1 mg/kg with clonidine 1 mcg/kg administered caudally is adequate for subumbilical surgery without adverse effects [50] .

Subarachnoid block with bupivacaine and clonidine in term and formerpreterm infants caused episodes of bradycardia and apnea without desaturation for the first 24 hours postoperatively which resolved spontaneously [51] . Unlike spinal opioids, clonidine does not cause Urinary retention and may hasten the time to first micturition after spinal anaesthesia [14],[52],[53],[54] . At the doses of 1-2 mcg/kg, clonidine significantly increases (approximately by a factor of two) the duration of blockade with no haemodynamic effects and decreases the peak plasma concentration of the local anaesthetics.

Caudal 0.2% ropivacaine 0.75 ml/kg with clonidine 1 mcg/kg for subumbilieal surgery attenuates changes in postoperative cortisol, insulin and blood glucose response to surgery [55] . The addition of clonidine 2mcg/kg to a weak (0.2%) solution of ropivacaine could enhance analgesia but reduce the risk of motor block­ade [56] . Sharpe P et al in their study concluded that there was an increase in analgesic duration with increasing doses ofclonidine administered caudally and arousal time was also prolonged [57] . Light to moderate sedation is commonly observed postoperatively for 1 to 3 hours, which is more beneficial than detrimental in paediatric patients, and at doses not exceeding 2 mcg/kg, this sedation does not preclude hospital discharge. Using clonidine makes catheter placement unnecessary for many paediatric procedures, reducing the overall mor­bidity and cost of the regional block procedure. How­ever, there are some respirator y concerns about very young patients especially the premature inftants [58] .

Analgesic adjuvant:

After systemic administration, clonidine improves the analgesic effects of anti-inflammatory agents and has peripheral (intra-articular, intravenous, regional) antinociceptive effects in combination with local anaesthetics, opioids and ketamine [59] . It is an effective analgesic and sedative in combination with NSAIDS for ophthalmic surgeiy [60] , tonsillectomy and adenoidectomy [61] . The analgesic effect of clonidine 2 mcg/kg as an adjuvant to 0.25% bupivacaine is similar when administered intravenously or caudally [62] .

Prevention of emergence agitation:

In a study by Schmidt et al, premedicating chil­dren with oral midazolam 0.5 mg/kg or clonidine 4 mcg/kg or transmucosal dexmedetomidine 1 mcg/kg pro­duced the same level of anxiety and sedation postop­eratively, but children who were given clonidine or dexmedetomidine had less perioperative sympathetic stimulation and postoperative pain as compared to chil­dren who were given midazolam [22] . Children who re­ceived intravenous clonidine 2 mcg/kg following induc­tion ofteneral anaesthesia woke up slowly (22' vs 14') had a longer PACU stay (57' vs 46') and were sleepy after discharge (75% vs 39%) (p < 0.03) as compared to the placebo group [63] .

Decreasing Minimum Alveolar Concentra­tion (MAC) ofsevroflurane:

Nishina et al in their study found that oral clonidine 4 mcg/kg given 105 minutes before induction decreased MAC values of sevoflurane for LMA insertion. The MAC of sevoflurane in the clonidine group was 1.3% +/- 0.18% and in the placebo group it was 2% +/- 0.1 6 [64] . The combination of clonidine and nitrous oxide lessened the MAC of sevoflurane more than that achieved by either drug alone [65] .

Postoperative nausea and vomiting (PONV):

Handa et al has shown that premedication with 4mcg/kg of oral clonidine 105 minutes before paediat­ric strabismus surgery enhances the antiemetic effect of propo lot when compared with oral midazolam 0.4 mg/kg [66] . Both oral and caudal clonidine has been reported to reduce the incidence of postoperative vomiting in children [67],[68],[69] .

Controlled hypotension:

In adolescents aged 10 - 16 years, oral clonidine 5 mcg/kg on the night before surgery and 90 minutes before a major oromaxillo facial surgery reduced the dose ofanaesthetics, analgesics, hypotensive agents and provided faster recovery from anaesthesia. It also re­duced the fluctuations in blood pressure and heart rate perioperatively [70] .

Sevoflurane induced agitation:

Bock et al found that prophylactic use of clonidine decreased sevoflurane induced agitation at a dose of 4 mcg/kg, independent of the route of administration [71] without increasing postoperative side effects in children [72].

In cardiovascular surgery:

Intravenous clonidine 0.18 to 3.16 mcg/kg/hr was found to be an effective analgesic, sedative and it en­sured haemodynamic stability by decreasing withdrawal symptoms like CNS hyperactivation, hypertension, ta­chycardia and fever following surgery to correct con­genital heart defects in infants aged 0-24 months. There was an age related normalized profile of the haemodynamic parameters with a reduction in heart rate and mean arterial pressure from the upper norm to the mean within 24 hours. In no case, was there a fall in blood pressure which required additional therapy to reach the target blood pressure [25] .

Post operative shivering:

Clonidine is effective in treating post operative shivering in children [73] . In a study by l3ergendahl et al [23] , clonidine prevented postoperative shivering when compared to midazolam. Extrapolation from adult data revealed that a dose of 1.5 mcg/kg is required to stop shivering in 5 minutes alter drug administration [74] .

Daycare Surgery:

Oral clonidine premedication and new safer local anaesthetics like ropivacaine and levobupivacaine with adjunvants like clonidine or ketamine Ibrreaional blocks and single caudal shots prolong analgesia with minimal side effects. These have been useful adjuncts in pediat­ric ambulatory surgery. Behavioural and cognitive changes may be seen. Hence parental education prior to administration is important [75],[76] .

Attenuation of response to tracheal intubation and extubation:

It was found that children premedicated with rectal clonidine 2.5 mcg/kg did not have a rise in neuropeptide Y, a marker of major adrenergic activa­tion during tracheal intubation, compared to those who received nmidazolam 300 mcg/kg [24] . It was also found that oral clonidine 4 mcg/kg given 105 minutes before induction attenuated hemodynamic changes associated with tracheal extubation. Yabuchi et al in their study found that oral clonidine premedication decreased MAC of sevoflurane for tracheal extubation and did not prolong emergence from anaesthesia [77] .

Anaesthetic sparing effect:

Oral clonidine premedication in children at a dose of 2-4 mcg/kg decreases the dose of intravenous bar­biturate required for induction of anaesthesia and also reduces halothane requirement for maintenance of ana­esthesia [17],[78] .

Treatment of spasticity:

Baclofen and clonidine are used in children diagnosed with cerebral palsy or traumatic brain injury. Mean dosages of 40 mg/day (n=86) and 0.4 mg/day (n=31) were required for baclofen and clonidine, respectively. The maximum dosage was 240 mg/day for baclofen and 3.8 mcg/kg for clonidine [79] .

Ventilatory response:

Clonidine administered caudally in a dose of 1 mcg/kg did not produce a rise in EtCO 2 , despite pro­longed sedation. Nishina et al found that a premedicant dose of 4 mcg/kg oral clonidine did not attenuate the increase in minute volume induced by a hypercapneic challenge under sevoflurane anaesthesia. They foundno difference in the respiratory rate, EtCO 2 and SpO 2 between clonidine and placebo groups and suggested that clonidine is a suitable premedicant for children to undergo sevoflurane anaesthesia with spontaneous ven­tilation. Infants who were preterm, formerly preterm or in the neonatal period had perioperative apnea fol­lowing caudal clonidine [81],[82],[83]

Cyclical vomiting syndrome:

Palmer et al reported that intravenous clonidine found relief in a teenage boy with cyclical vomiting syn­drome not responding to conventional therapy. He sug­gested that there are links between migraine, card iovas­cular system and adrenergic autonomic dysfunction [84] .

Sensorymotor gating deficits:

Clonidine because ofits effect on alpha-2c receptors is used to treat sensorymotor gating deficits like attention deficit hyperactivity disorder ADHD [85] schizophrenia, post traumatic stress disorder and drug withdrawal [86] .

Sedation in Paediatric Intensive Care Unit(PICU):

Clonidine is used as an analgesic and sedative in the ICU [87] and forms a part of the ICU protocol in UK [88] . Intravenous clonidine 1 mcg/kg/hour with midazolam 50 mcg/kg/hour was not associated with significant changes in heart rate, blood pressure and cardiac index and achieved satisfactory sedation scores [26] . Hence clonidine was found to be cardiostable as a sedative along with midazolam in critically ill infants who were ventilated [26] [89] . Lowery et al, has reported a long term use of about four and a halfmonths in a critically ill infant for analgosedative purpose [89] . Lyons et al reported a case of an 11 year old child with 78% deep burns who was ventilator dependent due to the use of large doses of morphine. Addition of low dose clonidine to the analgesic regime produced a dra­matic reduction in morphine consumption with an atten­dant improvement in ventilatory, gastrointestinal and psy­chological functions [90] .

Clonidine Overdose:

Caudal clonidine has a large margin of safety in healthy children as reported in three cases where 100 tines the dose for a single shot caudal was given. Apart from excessive somnolence for a day, these children had no respiratory depression or haemodynamic insta­bility[91]. A five year old child with cerebral palsy and seizure disorder was given clonidine in excessive doses by the mother to control restlessness. The child had bradycardia and hypotension after induction and re­quired resuscitation [92] . In a multicentre study conducted by Spiller et al children younger than twelve years of age who reported to six poison centers with clonidine ingestion were followed for a minimum of 24 hours. Though clinical effects were common, severe adverse effects occurred only in 10% oithe patients. The dose ingested was reported for 90 patients (80%). 61 (68%) children ingested 0.3 nag and none had coma, respira­tory depression, or hypotension. The lowest dose in­gested that resulted in coma and respiratory depres­sion was 0.3 mg (0.015mcg/kg). The authors have rec­ommended a direct medical evaluation for (1) all chil­dren 4 years of age and younger with unintentional clonidine ingestion of 0.1 mg (2) ingestion of 0.2 mg in children 5 to 8 years of age and (3) ingestion of 0.4 mg in children older than 8 years of age. Observation for 4 hours may be sufficient to detect patients who will de­velop severe effects[93].

Sinha et al reviewed cases ofclonidine poisoning presenting to Royal Children's Hospital, Melbourne, Australia over the period from 1997 to 2001. Twenty-four cases of clonidine poisoning were identified over the 5 year period. Nine patients ingested their own medication, which was prescribed for attention-deficit hyperactivity disorder. Clonidine was prescribed for children in 16 cases (67%) for other purposes. Im­paired conscious state and bradycardia were the most common presenting Features. Activated charcoal was given in 14 cases and volume expansion in six. There were 12 children (50%) who required admission to the intensive care for monitoring, including three who re­ceived mechanical ventilation. The average length of stay was 25.7 hours with no long-term complications[85].

Contraindications to the use of Clonidine:

Hypovolemia, A-V block, prolonged P-R inter­val and spontaneous bradycardia[94] .


   Conclusion Top


Clonidine is associated with a number of beneficial effects especially in the paediatric age group. Its ability to provide a calm patient preoperatively, stable intraoperative haem odynam ics and a prolonged post­operative sedation without respiratory depression makes it a suitable anaesthetic agent. Furthermore, the anal­gesic effect provided by clonidine when administered intravenously and as an adjuvant to regional anaesthetic techniques makes it a suitable choice in infants. Because of its sedative, anxiolytic and analgesic proper­ties, clonidine is assuming greater importance as an anaesthetic adjuvant in paediatric anaesthesia.



 
   References Top

1.Moss J, Glick D. The Autonomic Nervous System.In:Miller RD Editor. Miller's Anesthesia. 6th Ed.Philadelphia:Elsevier Churchill Livingstone 2005:617-77.  Back to cited text no. 1      
2.Aho M. Erkola O. Korttila K. Alpha-2 Adrenergic ago­nists in anaesthesia. Curr OpinAnesthesiol 1992;5:481.  Back to cited text no. 2      
3.Potts AL, Larsson P. Eksborg S, Warman G, Lonnqvist PA, Anderson B.I. Clonidine disposition in children: a population analysis. PaediatrAnaesth 2007:17:924-33.  Back to cited text no. 3      
4.Lonngvist PA. Bergendahl HT, Eksborg S. Pharmacokinetics of clonidine after rectal administration in children. Anesthesiology 1994;81:1097-101  Back to cited text no. 4      
5.Stoelting RK, Hillier SC. Editors. Antihypertensive Drugs. In: Pharmacology& Physiology in Anesthetic Practice, 411 Ed. Philadelphia: Lippincott Williams& Wilkins 2006: 338-51.  Back to cited text no. 5      
6.Davis M, Gendclman DS, Tischler MD, Gendelman PMl. A primary acoustic startle circuit: Lesion and stimula­tion studies. Journal of Neuroscience 1982;6:791-05.  Back to cited text no. 6      
7.De Vos H. Bricca G. De Keyser J. Dc Backer J P Bousquet P. Vauquclin G Imidazoline receptors, non-adrenergic idazoxan bindin g sites and alpha 2-adrenoceptors in the human central nervous system. Neuroscience 1994:59:589-98.  Back to cited text no. 7      
8.Hamilton C A. The role ofimidazoline receptors in blood pressure regulation. Pharmacol Ther 1992; 54:231.  Back to cited text no. 8      
9.Guyenet P G, Cabot G B. Inhibition of sympathetic preganglionic neurons by catecholamines and clonidine: Mediation by an alpha adrenergic receptor. Neurosci 1981:1:908.  Back to cited text no. 9      
10.Eisenach JC, DeKock M, Klimscha W. Alpha-2 adrener­gic agonist for regional anesthesia. A clinical review of clonidine (1984-1995). Anesthesiology 1996;85:655-74.  Back to cited text no. 10      
11.Delaunay L, Bonnet F. Liu N. Beydon L, Catoire P, Sessler DI.Clonidine comparably decreases the thermoregula­tory thresholds for vasoconstriction and shivering in humans.Anesthesiolo2y 1993:79:470-4.  Back to cited text no. 11      
12.Delaunay L, Herail T, Sessler DI, Lienhart A, Bonnet F.Clonidine increases the sweating threshold. but does not reduce the gain of sweating.Anesth Anal 2 1996;83:844-8.  Back to cited text no. 12      
13.De Witte J, Sessler DI. Perioperative shivering: Physiol­ogy and pharmacology. Anesthesiology 2002;96:467-­484.  Back to cited text no. 13      
14.Metz SA, Halter JB. Robertson RP. Induction of defec­tive insulin secretion and impaired glucose tolerance by clonidine. Selective stimulation of metabolic alpha adrenergic pathways.Diabetes 1978;27:554.  Back to cited text no. 14      
15.Flacke JW, Bloor BC, Flacke WE, Wong D, Dazza S, Stead SW, et al.Reduced narcotic requirement by clonidine with improved hemodynamic and adrenergic stability in patients undergoing coronary bypass surgery.Anesthesiology 1987;67:11-9.  Back to cited text no. 15      
16.Ghignone M, Calvillo O, Quintin L.Anesthesia and hy­pertension: the effect of clonidine on perioperative he­modynam ics and isoflurane requirements. Anesthesiol­ogy 1987:67:3.  Back to cited text no. 16      
17.Bloor BC, Flacke WE.Reduction in halothane anesthetic requirement by clonidine, an alpha-adrenergic agonist. Anesth Analg 1982;61:741.  Back to cited text no. 17      
18.Stella MJ. Bailey AG.Intranasal clonidine as a premedicant: three cases with unique indications. Paediatr Anaesth 2008:18:71-3.  Back to cited text no. 18      
19.Almenrader N, Passariello M, Coccetti B, Haiberger R, Pietropaoli P. Steal-induction after clonidine premedica­tion: a comparison of the oral and nasal route. Paediatr Anaesth 2007;17:230-4.  Back to cited text no. 19      
20.Bonnet F, Boico O. Rostaining S. Clonidine-induced an­algesia in postoperative patients: Epidural versus intra­muscular administration. Anesthesiolo2y 1990:72:423.  Back to cited text no. 20      
21.Almenrader N. Passariello M. Coccetti B. Haiberger R, Pietropaoli P.Premedication in children: a comparison oforal midazolam and oral clonidine. Paediatr Anaesth 2007;17:1143-9.  Back to cited text no. 21      
22.Schmidt AP, Valinetti EA, Bandcira D. Bertacchi MF, Simoes CM, Auler JO Jr. Effects of preanesthetic admin­istration of midazolam, clonidine, or dexmedetomidine on postoperative pain and anxiety in children. Paediatr Anaesth 2007:17:667-74.  Back to cited text no. 22      
23.Bergendahl HT, Lonnqvist PA, Eksborg S. Ruthstrom E, Nordenberg L, Zetterqvist H, et al.Clonidine vs midazolam as premedication in children undergoing adeno-tonsillectomy: a prospective, randomized, con­trolled clinical trial.Acta Anaesthesiol Scand 2004:48:1292-300.  Back to cited text no. 23      
24.Bergendahl HT, Eksborg S, Kogner P. Ninnqvist PA.Neuropeptide Y response to tracheal intubation in anaesthetized children: effects ofclonidine vs midazolam as premedication.Br J Anaesth 1999:82:391-4.  Back to cited text no. 24      
25.Pohl-Schickinger A, Lemmer J, Hiibler M, Alexi­Meskishvili V, Redlin M, Berger F, Stiller B.Intravenous clonidine infusion in infants after cardiovascular sur­gery. PaediatrAnaesth 2008;18:217-22.  Back to cited text no. 25      
26.Ambrose C, Sale S, Howells R. Bevan C, Jenkins I, Weir P et al. Intravenous clonidine infusion in critically ill children: dose-dependent sedative effects and cardio­vascular stabil ity.Br J Anaesth 2000:84:794-6.  Back to cited text no. 26      
27.Saudan S, Habre W, Ceroni D, Meyer PA. Greenberg RS, Kadin A et al. Safety and efficacy of patient con­trolled epidural analgesia following pediatric spinal sur­gery. Paediatr Anaesth 2008;18:132-9.  Back to cited text no. 27      
28.Ivani G, Codipietro L, Gagliardi F, Rosso F, Mossetti V, Vitale P. A long-term continuous infusion via a sciatic catheter in a 3-year-old boy. Paediatr Anaesth 2003;13:718-21.  Back to cited text no. 28      
29.Naja ZM, Maaliki H, Al-Tannir MA, El-Rajab M. Ziade F, Zeidan A. Repetitive paravertebral nerve block using a catheter technique for pain relief in post-herpetic neu­ralgia. Br J Anaesth 2006:96:381-3.  Back to cited text no. 29      
30.Scheinin H, Aantaa R, Anttila M. Hakola P, Helminen A, Karhuvaara S. Reversal of the sedative and sympatholytic effects of dexmedetomidine with a specific alpha2-adrenoceptor antagonist atipamezole: A pharma­codynamic and kinetic study in healthy volunteers. Anaesthesiology 1998;89:574.  Back to cited text no. 30      
31.Shelly MP. Dexmedetomidine: a real innovation or more of the same? Br J Anaesth 2001;87:677-678.  Back to cited text no. 31      
32.Bergendahl H, Lönnqvist PA, Eksborg S. Clonidine: an alternative to benzodiazepines for premedication in chil­dren. Curr OpinAnaesthesiol 2005:18:608-13.  Back to cited text no. 32      
33.Bergendahl H. Lonngvist PA, Eksborg S. Clonidine in paediatric anaesthesia: review of the literature and com­parison with benzodiazepines for premedication. Acta Anaesthesiol Scand 2006;50:135-43.  Back to cited text no. 33      
34.Jatti K. Batra YK, Bhardwaj N. Malhotra S. Comparison of psychomotor functions and sedation following premedication with oral diazepam and clonidine in children.Int J Clin Pharmacol Ther 1998:36:336-9.  Back to cited text no. 34      
35.Nishina K, Mikawa K, Maekawa N, Shiga M, Obara H. Effects of oral clonidinc premedication on plasma glu­cose and lipid homeostasis associated with exogenous glucose infusion in children. Anesthesiology 1998:88:922-7.  Back to cited text no. 35      
36.Nishina K, Mikawa K, Maekawa N, Obara H. Oral clonidine premedication blunts the heart rate response to intravenous atropine in awake children. Anesthesiol­ogy 1995:82:1126-30.  Back to cited text no. 36      
37.Nishina K, Mikawa K, Maekawa N, Obara H. Oral clonidinc premedication does not affect preoperative gastric fluid pH and volume in children. Anesth Analg 1995:80:1065-6.  Back to cited text no. 37      
38.Quintin L, Viale JP, Annat G. Oxygen Uptake after major abdominal Surgery: Effect of clonidine. Anesthesiology 1991:74: 236.  Back to cited text no. 38      
39.Bailey PL, Sperry RJ, Johnson GK, Eldredge SJ, East KA, East TD et al.Respiratory effects of clonidine alone and combined with morphine. III humans. Anesthesiol­ogy 1991:74:4 3-8.  Back to cited text no. 39      
40.Ooi R, Pattison .1. Feldman Sa. The effects of intrave­nous clonidine on ventilation. Anaesthesia 1991:46:632.  Back to cited text no. 40      
41.Rauck RL, Eisenach JC, Jackson K, Young LD, Southern J.Epidural clonidine treatment for refractory reflex sym­pathetic dystrophy.Anesthcsiology 1993; 79: 1163-9.  Back to cited text no. 41      
42.Shiga M, Nishina K, Mikawa K, Uesugi T, Maekawa N. Obara H. Oral clonidine premedication does not change efficacy of simulated epidural test dose in sevoflurane­anesthetized children. Anesthesiology 2000:93:954-8.  Back to cited text no. 42      
43.Hussain AS, Siddiqui MS, Hamdard F, Mayhew JF. Post­operative apnoea in an ex-premature infant: is it only related to clonidine? PaediatrAnaesth 2003;13:741.  Back to cited text no. 43      
44.Marhofer P, Koinig H, Kapral S. [The choice of drugs for caudal anaesthesia in children. An overview] Anacsthesist 2003:52:55-67.  Back to cited text no. 44      
45.Kodric N. Regional anesthesia in children. Med Arh 2003;57:61-4.  Back to cited text no. 45      
46.Ivani G, Mattioli G, Rega M, Conio A, Jasonni V, de Negri P. CloIlidine-mepivacalne mixture vs plain mepivacaine in paediatric surgery. PaediatrAnaesth 1996:6:111-4.  Back to cited text no. 46      
47.Cucchiaro G, Dagher C, Baujard C, Dubousset AM, Benhamou D. Side-effects of postoperative epidural analgesia in children: a randomized study comparing morphine and clonidine. Paediatr Anaesth 2003;13:318-23  Back to cited text no. 47      
48.Peutrell JM, Lonnqvist PA. Neuraxial blocks for anaesthesia and analgesia in children. Curr Opin Anaesthesiol 2003;16:461-70.  Back to cited text no. 48      
49.Dalens B. Some Current controversies in paediatric re­gional anaesthesia. Curr Opin Anaesthesiol 2006;19:301-­8.  Back to cited text no. 49      
50.Passariello M, Alrncnrader N, Canneti A, Rubeo L, Haibcrgcr R, Pietropaoli P. Caudal analgesia in children: S(+)-ketamine vs S(+)-ketamine plus clonidine. Pacdiatr Anaesth 2004:14:851-5.  Back to cited text no. 50      
51.Rochette A, Troncin R, Raux O, Dadure C, Lubrano JF, Barbotte E. et al. Clonidine added to bupivacaine in neo­natal spinal anesthesia: a prospective comparison in 124 preterm and term infants. Pacdiatr Anaesth 2005;15:1072-7.  Back to cited text no. 51      
52.Gentlli M. Bonnet F. Incidence of Urinary retention after spinal anesthesia: Comparison of morphine and clonidinc. Anesthesiology 1994:81: A945.  Back to cited text no. 52      
53.Gentili M. Mamelle JC, Le Foll G. Combination of low dose bLlpivacalne and clonidine for unilateral spinal an­esthesia in arthroscopic knee surgery. Reg Anesth 199520:169.  Back to cited text no. 53      
54.Kapral S, Kocek S, Krafft P, et al. Intrathecal clonidine delays motor onset of bupivacaine. Anesthesiology 81:A935.1994.  Back to cited text no. 54      
55.Akbas M, Akbas H, Yegin A, Sahin N, Titiz TA. Com­parison of the effects of clonidine and ketaminc added to ropivacaine on stress hormone levels and the dura­tion of caudal analgesia. Paediatr Anaesth 2005;15:580-­5.  Back to cited text no. 55      
56.Ivani G, De Negri P, Conio A, Amati M. Roero S. Giannone S et al. Ropivacaine-clollidine combination for caudal blockade in children. Acta Anaesthesiol Scand 2000;44:446-9.  Back to cited text no. 56      
57.Sharpe P, Klein J R, Thompson JP, Rushman SC, Sherwin J, Wandless JG, et al. Analgesia for Circumcision in a paediatric population: comparison of caudal bupivacaine alone with bupivacainc plus two doses of clonidine. Paediatr Anaesth 2001:11:695-700.  Back to cited text no. 57      
58.Bouchut JC, Dubois R, Godard J: Clonidine in pretern ­infant caudal anesthesia may be responsible for post­operative apnea. Reg Anesth Pain Med 2001; 26:83.  Back to cited text no. 58      
59.Tryba M, Gchling M. Clonidine-a potent analgesic ad­juvant. Curr OpinAnaesthesiol 2002:15:511-7.  Back to cited text no. 59      
60.K, Mikawa K, Shiga M, Takao Y, Mackawa N, Obara H. Diclofenac and flurbiprofen with or without clonidine for postoperative analgesia in children under­going elective ophthalmological surgery. Paediatr Anaesth 2000;10:645-51.  Back to cited text no. 60      
61.Reimer EJ. Dunn GS, Montgomery CJ, Sanderson PM, Scheepers LD, Merrick PM.The effectiveness of clonidine as an analgesic in paediatric adenotonsillectomy. Can J Anaesth 1998:45:1162-7.  Back to cited text no. 61      
62.Hansen TG, Henneberg SW, Walther-Larsen S, Lund J, Hansen M. Caudal bupivacaine supplemented with cau­dal or intravenous clonidine in children undergoing hypospadias repair: a double-blind study. Br J Anaesth 700492:223-7.  Back to cited text no. 62      
63.Malviya S, Voepel-Lewis T, Ramamurthi RJ, Burke C, Tait AR. Clonidine for the prevention of emergence agi­tation in young children: efficacy and recovery profile. PaediatrAnaesth 2006;16:554-9.  Back to cited text no. 63      
64.Nishina K, Mikawa K, Uesugi T. Obara H. Oral clonidine premedication reduces minimum alveolar concentration of sevollurane for laryngeal mask airway insertion in children. PaediatrAnaesth 2006:16:834-9.  Back to cited text no. 64      
65.Nishina K, Mikawa K, Shiga M, Maekawa N. Obara H. Oral clonidine premedication reduces minimum alveolar concentration of sevoflurane for tracheal intubation in children. Anesthesiology 1997;87:1324-7.  Back to cited text no. 65      
66.Handa F, Fuji Y. The efficacy of oral clonidine premedi­cation in the prevention of postoperative vomiting in children following strabismus surgery. PaediatrAnaesth 2001:11:71-4.  Back to cited text no. 66      
67.Mikawa K, Nishina K, Maekawa N, Takao Y, Asano M, Obara H.Attenuation of the catecholamine response to tracheal intubation with oral clonidine in chi ldren.Can J Anaesth 1995;42:869-74.  Back to cited text no. 67      
68.Motsch J, Bottiger BW, Bach A, Bohrer H, Skoberne T, Martin E.Caudal clonidine and bupivacaine for com­bined epidural and general anaesthesia in chi ldren.Acta Anaesthesiol Scand 1997;41:877-83.  Back to cited text no. 68      
69.Grottke 0, Muller J, Dietrich PJ, Krause TH, Wappler F.Comparison of premedication with clonidine and midazolam combined with TCI for orthopaedic shoulder surgery. Anasthesiol Intensivmed Notfallmed Schmerzther 2003:38:772-80.  Back to cited text no. 69      
70.Hackmann T, Friesen M, Allen S, Precious DS. Clonidine facilitates controlled hypotension in adolescent chil­dren. AnesthAnalg 2003;96:976-81.  Back to cited text no. 70      
71.Bock M, Kunz P, Schreckenberger R, Graf BM, Martin E, Motsch J. Comparison of caudal and intravenous clonidine in the prevention of agitation after sevollurane in children.Br J Anaesth 2002;88:790-6.  Back to cited text no. 71      
72.Nishina K, Mikawa K. Clonidine in paediatric anaesthe­sia. Curr OpinAnaesthesiol 2002;15:309-16  Back to cited text no. 72      
73.Joris I. Banache M, Bonnet F. Clonidine and ketancerin both are effective treatment for postoperative shiver­ing: Anesthesiology 1993:79: 532-39.  Back to cited text no. 73      
74.Kranke P, Eberhart LH, Roewer N, Tramèr MR.Postoperative shivering in children: a review on pharmacologic prevention and treatment.Paediatr Drugs 2003:5:373-83.  Back to cited text no. 74      
75.Lonnqvist PA, Morton NS. Paediatric day-case anaes­thesia and pain control. Curr Opin Anaesthesiol. 2006;19(6):617-21.  Back to cited text no. 75      
76.Eck JB. Ross AK. Paediatric re­gional anaesthesia-what makes a difference? Best Pract Res Clin Anaesthesiol 2002;16:159-74.  Back to cited text no. 76      
77.Yaguchi Y, Inomata S, Kihara S, Baba Y, Kohda Y, Toyooka H.The reduction in minimum alveolar concen­tration for tracheal extubation after clonidine premedi­cation in children. Anesth Analg 2002;94:863-6.  Back to cited text no. 77      
78.Nishina K, Mikawa K, Maekawa N, Obara H.The effi­cacy of clonidine for reducing perioperative haemodynamic changes and volatile anaesthetic require­ments in children.Acta Anaesthesiol Scand 1996;40:746-51.  Back to cited text no. 78      
79.Lubsch L, Habersang R, Haase M, Luedtke S. Oral baclofen and clonidine for treatment of spasticity in children. J Child Neuro12006;21:1090-2.  Back to cited text no. 79      
80.Nishina K, Mikawa K. Uesugi T, Obara H. Oral clonidine does not change ventilatory response to carbon diox­ide in sevoflurane-anesthetized children. Paediatr Anaesth 2004;14:1001-4.  Back to cited text no. 80      
81.Galante D. Preoperative apnea in a preterm infant after caudal block with ropivacaine and clonidine. Paediatr Anaesth 2005;15:708-9.  Back to cited text no. 81      
82.Fellmann C, Gerber AC, Weiss M.Apnoea in a former preterm infant after caudal bupivacaine with clonidine for inguinal herniorrhaphy. Paediatr Anaesth 2002;12:637-40.  Back to cited text no. 82      
83.Breschan C, Krumpholz R, Likar R, Kraschl R, Schalk HV. Can a dose of 2microg.kg(-1) caudal clonidine cause respiratory depression in neonates? Paediatr Anaesth 1999;9:81-3.  Back to cited text no. 83      
84.Palmer GM, Cameron DJ. Use of intravenous midazolam and clonidine in cyclical vomiting syndrome: a case re­port. PaediatrAnaesth 2005:15:68-72.  Back to cited text no. 84      
85.Sinha Y, Cranswick NE. Clonidine poisoning in children: a recent experience. J Paediatr Child Health 2004;40:678-80.  Back to cited text no. 85      
86.Jukka Sallinen, Antti Haapalinna, Timo Viitanlaa, Brian K. Kobilka, Mika Scheinin. Adrenergic 2C-Receptors Modulate the Acoustic Startle Reflex. Prepulse Inhibition and Aggression in Mice. The Journal of Neuro­science 1998;18:3035-42.  Back to cited text no. 86      
87.Huber D, Kretz FJ. Efficacy of clonidinc in paediatric anaesthesia. Anasthesiol Intensivmed Notfallmed Schmerzther 2005:40:567-75.  Back to cited text no. 87      
88.Jenkins IA, Playfor SD, Bevan C, Davies G, Wolf AR. Current United Kingdom sedation practice in pediatric intensive care. Paediatr Anaesth 2007;17:675-83.  Back to cited text no. 88      
89.Lowery R, Zuk J, Polaner DM. Long-term use of clonidine in a critically-ill infant.Paediatr Anaesth 2005:15:694-8.  Back to cited text no. 89      
90.Lyons B, Casey W, Doherty P, McHugh M, Moore KP.Pain relief with low-dose intravenous Clonidin in a child with severe burns. Intensive Care Med 1996;22:249-51.  Back to cited text no. 90      
91.Meyer C, Cambray R.One hundred times the intended dose of caudal clonidine in three pediatric patients.Paediatr Anaesth 2008;18:888-90.  Back to cited text no. 91      
92.Gold finger MM, Tripi PA. Cardiac arrest in a child with cerebral palsy undergoing sevoflurane induction of anesthesia after preoperative clonidine. Paediatr Anaesth 2007;17:270-2.  Back to cited text no. 92      
93.Spiller HA, Klein-Schwartz W, Colvin JM, Villalobos D, Johnson PB, Anderson DL. Toxic clonidine ingestion in children. J Pediatr 2005:146:263-6.  Back to cited text no. 93      
94.Weerasuriya K, Shaw E, Turner P. Preliminary clinical pharmacological studies of S3341, a new hypotensive agent, and comparison with clonidine in normal males. Eur J Clin Pharmacol 1984; 27: 281-6.  Back to cited text no. 94      


    Figures

  [Figure 1]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
    Introduction
    Conclusion
    Introduction
    Conclusion
    References
    Article Figures

 Article Access Statistics
    Viewed3378    
    Printed113    
    Emailed3    
    PDF Downloaded860    
    Comments [Add]    

Recommend this journal