• Users Online: 929
  • Print this page
  • Email this page


 
CLINICAL INVESTIGATION
Year : 2009  |  Volume : 53  |  Issue : 3  |  Page : 324-329 Table of Contents     

A Comparative Study of Propofol and Isoflurane Anaesthesia using Butorphanol in Neurosurgery


1 Professor and Head, Division of Neuroanaesthesia, Institute of Medical Sciences, Bananas Hindu, University, Varanasi-221 005, India
2 P.G.Student, Department of Anaesthesiology, Institute of Medical Sciences, Bananas Hindu, University, Varanasi-221 005, India
3 Lecturer, Department of Anaesthesiology, Institute of Medical Sciences, Bananas Hindu, University, Varanasi-221 005, India

Date of Web Publication3-Mar-2010

Correspondence Address:
L D Mishra
Department of Anaesthesiology, Institute of Medical Sciences, Bananas Hindu, University, Varanasi-221 005
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


PMID: 20640141

Rights and PermissionsRights and Permissions
 

Propofol and isoflurane have well proven roles as intravenous and inhalational anaesthetics respectively in neurosurgery. We conducted this study to know the outcome using butorphanol as an intraoperative analgesic. Sixty craniotomy patients randomly divided into two groups of 30 each were included in this study. Group A patients were induced and maintained with propofol. Group B patients were induced with thiopentone and maintained with isoflurane. All patients were administered 30µg.kg -1 butorphanol intravenously 10 minutes before induction of anaesthesia, fol­lowed by slow injection of 30µg.kg -1 midazolam. All were assessed for sedation, respiratory insufficiency, postopera­tive nausea and vomiting (PONV) and other side effects in the recovery room. We found no difference in demo­graphic parameters between the groups. The fall in HR was maintained in the post induction / intubation period and throughout the intraoperative period in Group A, unlike Group B patients in whom it rose significantly following intubation. Butorphanol was found to be a safe intraoperative analgesic in neurosurgical patients. In addition, it was associated with statistically better haemodynamics and earlier recovery when used with propofol as compared to thiopentone-isoflurane anaesthesia.

Keywords: Craniotomy, Propofol, Isoflurane, Butorphanol, Haemodynamics, Extubation time, Recovery of consciousness


How to cite this article:
Mishra L D, Rajkumar N, Singh S N, Dubey R K, Yadav G. A Comparative Study of Propofol and Isoflurane Anaesthesia using Butorphanol in Neurosurgery. Indian J Anaesth 2009;53:324-9

How to cite this URL:
Mishra L D, Rajkumar N, Singh S N, Dubey R K, Yadav G. A Comparative Study of Propofol and Isoflurane Anaesthesia using Butorphanol in Neurosurgery. Indian J Anaesth [serial online] 2009 [cited 2020 Aug 8];53:324-9. Available from: http://www.ijaweb.org/text.asp?2009/53/3/324/60297


   Introduction Top


Propofol and isoflurane have well proven roles as intravenous and inhalational anaesthetics respectively in neurosurgery [1] . As most of the neurosurgical proce­dures are of longer duration, it is quite reasonable that we use a relatively longer acting analgesic which can give an equianalgesic intra operative period than a shorter acting newer opioid which needs to be repeated frequently or given by continuous infusion. On the other hand, early neurological assessment is essential follow­ing most neurosurgical operations. Thus we need to use drugs and techniques that should not cause any hin­drance to this objective. Butorphanol has been reported to provide adequate analgesia when used as a supple­ment in balanced anaesthetic techniques [2]. In healthy volunteers, butorphanol (0.03-0.06mg.kg -1 IV) pro­duces no or minimal cardiovascular changes [3] .

Medline search did not reveal any information regarding intraoperative conditions and patient outcomes in neurosurgical patients with butorphanol/propofol vs butorphanol/thiopentone/isoflurane.Accordingly, we planned this study to evaluate the intraoperative condi­tions and patient outcomes in neurosurgical patients using butorphanol/propofol Vs butorphanol/thiopen­tone/isoflurane anaesthesia.


   Methods Top


The study was conducted at the SS University Hospital, Institute of Medical Sciences, Banaras Hindu University, Varanasi. After obtaining the institutional ethi­cal committee approval and informed consent, sixty patients of ASA grade I/II with Glasgow Coma Scale Score of 13 or more, posted for elective craniotomy were included in the study. The patients were randomly assigned into two groups A and B of thirty patients each.

Group A patients were induced and maintained with propofol . Group B patients were induced with thio­pentone and maintained with isoflurane.

Exclusion Criteria: Patients with systemic dis­orders like hypertension, diabetes mellitus, respiratory diseases, hepatic or renal insufficiency were excluded from the study. Patients with history of allergy to any drug used in the past were also excluded from the study.

Study Procedure: All patients were premedi­cated with oral alprazolam 0.25-0.5mg at evening and 6.00 AM on the day of surgery. Baseline heart rate (HR), mean arterial blood pressure (MABP), oxygen saturation (SpO 2 ), body temperature and central venous pressure (CVP) were recorded. 10 minutes before in­duction of general anaesthesia (GA) 30mcg.kg -1 butorphanol followed by slow injection of 30mcg.kg -1 of midazolam were administered intravenously (IV). Group A patients were induced with propofol bolus titrated to the disappearance of verbal response and Group B patients were induced with thiopentone ti­trated to the loss of eyelash reflex. All patients were intubated with a flexometallic tube of appropriate size 3 min after giving 0.1 mg.kg -1 of vecuronium bromide. Care was taken to prevent injuries to eyes, ears, pe­ripheral nerves or limbs due to positioning.

After induction the anaesthesia was maintained with propofol and nitrous oxide in oxygen (60:40) in Group A patients. Propofol infusion was given in a dose range of 50-150 mcg.kg -1 .min -1 , titrated to the haemodynamic parameters. In Group B patients, the anaesthesia was maintained with isoflurane and nitrous oxide in oxygen (60:40). The end tidal concentration of isoflurane was titrated to keep the haemodynamic parameters near to base line values. Intermittent doses of vecuronium bromide were given in both the groups as and when required.The central venous pressure& end tidal carbon dioxide (EtCO 2 ) were maintained in the range of 7-10 cm of water& 30-35 mmHg re­spectively in both the groups. The anaesthetic was stopped after skull pin site closure in all patients. The HR, MABP, SpO 2 , EtCO 2 , esophageal temperature, anaesthetic gas concentrations and urine output were monitored in all patients.

We extubated all patients on the operating table after recovery of adequate spontaneous ventilation and shifted them to the recovery room after recovery of consciousness. Patients in whom extubation was de­layed and/or needed elective ventilation were noted. The time interval between cessation of the anaesthetic agent, extubation and recovery of consciousness were recorded. In the recovery room the patients were as­sessed for sedation, respiratory insufficiency, postop­erative nausea and vomiting (PONV) and other side effects, if any. We used Ramsay sedation score for the assessment of sedation (Score1= Anxious, agitated, non-cooperative; Score 2= Cooperative, oriented, tranquill; Score 3= Respond to verbal commands; Score 4= Brisk response to loud noise or a light tap; Score 5= Sluggish response to loud noise or a light tap; Score 6= No response to stimuli). Unpaired t test was used for statistical analysis and p<0.05 was con­sidered as significant.


   Results Top


We did not find any difference between the groups in terms of demographic parameters and duration of anaesthesia [Table 1].

There was a significant fall in HR following midazolam and butorphanol in both groups. The fall in HR was maintained in the post induction / intubation period and throughout the maintenance of anaesthesia in Group A, but not in Group B patients in whom it rose significantly following intubation. The HR was not significantly different from the baseline throughout the maintenance of anaesthesia in either group at most of the intervals [Table 2].

[Table 3] shows the intergroup comparison of MABP at different intervals. The baseline and post midazolam/ butorphanol value were not significantly different. All the values in the rest of the periods were significantly higher in Group B patients when compared to Group A. An intergroup comparison of mean extubation time and time to recovery of consciousness after the cessation of an­aesthetic is shown in [Figure 1]. The mean extubation and recovery of consciousness time in Group A patients were 13.00 ± 1.65 minutes and 15.07 ± 2.05 minutes re­spectively as compared to 17.67 ± 2.70 and 19.87 ± 2.45 minutes respectively in Group B. It is evident that both the times are significantly longer in Group B.(p=0.000)

The mean sedation score was significantly higher in Group B patients when compared with Group A at the time of admission to recovery room. The sedation scores at other time intervals were not significantly dif­ferent between the two groups [Figure 2].(p=0.000)

One patient in Group B developed bronchospasm following extubation. None of the patients needed ad­mission to the intensive care unit.


   Discussion Top


Unfortunately there are very few studies reported in the literature on butorphanol and its influence on in­traoperative conditions and patient outcomes. More specifically there is no report on the use of butorphanol in neurosurgical patients.Pandit and Kothary, [4] observed that thiopentone/ butorphanol induction provides sta­tistically insignificant haemodynamic responses to tra­cheal intubation in laparoscopic outpatient procedures. Laffey and Kay [5] in a comparative study on butorphanol and morphine as a premedicant found that butorphanol was as effective as morphine with the advantage of fewer unwanted side effects.

Yung-Fong Sung et al [6] found that the butorphanol was a good opioid analgesic for balanced anaesthesia. The authors suggested that butorphanol was a better choice than morphine for use in balanced anaesthesia techniques because of its comparable analgesic effi­cacy and amnesia along with lesser postoperative res­piratory depression and a shorter recovery room stay. Pramila Chari et al [7] observed conducive LMA inser­tion conditions with the use butorphanol as compared to fentanyl. Anil Agarwal et al [8] observed the pain re­lieving property of butorphanol premedication given prior to intravenous propofol. This pain relieving prop­erty has a favourable effect prior to neurosurgical pro­cedures by lowering patient's anxiety and the accom­panying hemodynamic alteration.

Midazolam acts synergistically with general anaesthetics. McClunes et al al [9] observed a synergistic interaction of midazolam with propofol to loss of re­sponse to verbal commands as the clinical end point. Oliver et al [10] , observed that midazolam premedication reduces propofol dose requirements for multiple an­aesthetic end points.

In our study, we found that administration of midazolam and butorphanol 5 minutes before induc­tion of GA produced a statistically significant fall in HR and MABP in both the propofol and isoflurane groups. We may attribute this to anxiolysis and synergistic seda­tive effects of midazolam and butorphanol. The fall in HR& MABP was not significant when compared be­tween the two groups which shows a consistency of effect.

Grounds et al [11] found no change in heart rate fol­lowing injection of propofol whereas there was ten­dency to initial tachycardia following thiopentone. Coley et al [12] observed that propofol attenuates the increase in arterial blood pressure and heart rate in response to laryngoscopy and intubation. They also reported that this increase in arterial pressure was associated with an increase in plasma noradrenalin levels after thiopentone induction level but not after propofol. We observed an increase in mean heart rate and MABP after tracheal intubation in Group B patients but the rise was not sig­nificant when compared to baseline. This suggests that the propofol maintains the baseline hemodynamics. On comparing the haemodynamics between the groups we found that the HR and MABP were always on the higher side following intubation, during maintenance of and emergence from anaesthesia in patients anaesthetised with thiopentone/ isoflurane anaesthesia.

Todd et al [13] , in their prospective comparative trial of three anaesthetics for elective supratentorial cran­iotomy reported higher heart rates in isoflurane/nitrous oxide anaesthesia. Van Hamelrijck et al [14] , in their study on craniotomy patients using thiopentone sodium/ isoflurane and fentanyl/ nitrous oxide anaesthesia, ob­served that the decrease in MABP after induction with thiopentone was followed by a significant increase in MABP and HR during intubation. Conversely the HR and MABP did not change during propofol loading in­fusion. Our study observation is in accordance with these studies.

Billard et al [15] , reported a significant increase in mean blood pressure (mean 50 mmHg, p<0.05) fol­lowing intubation and that the haemodynamic response to intubation was decreased by the administration of fentanyl in a dose dependent manner. Our observa­tions are similar to the study of Billard et al, despite the fentanyl being replaced by butorphanol in our study. Thus we may say that butorphanol can also blunt the haemodynamic response when used with propofol, again an advantageous factor in procedures related to neurosurgery.

The mean extubation and recovery of conscious­ness time in Group A patients were 13.00 ± 1.65 min­utes and 15.07 ± 2.05 minutes respectively as com­pared to 17.67 ± 2.70 and 19.87 ± 2.45 minutes re­spectively in Group B. This goes in line with similar studies of Ebert et al [16] , and Alan et al [17] , where time to recovery was found to increase with increasing dura­tion of isoflurane anaesthesia but not after propofol ana­esthesia. Alan et al [17] reported a mean emergence and extubation times of 20.8 ± 10.1 and 30.0 ± 28.0 min­utes respectively in their observations. Valance [18] also reported prolonged recovery and psychomotor im­pairment with isoflurane anaesthesia.

One patient from Group B had bronchospasm immediately after extubation which could have been due to the presence of traces of isoflurane in the breath­ing circuit. Though this was found in only one patient, it cannot be ignored altogether seeing a relatively small number of patients in the study groups. None of our patients had any other adverse effects such as emer­gence agitation or PONV in the recovery period.

The clinician has to be aware of issues regarding the context sensitive half life of fentanyl and sufentanil, which being relatively short will require frequent top­up doses or infusions and fentanyl and sufentanil are more costaly as compared to butorphanol,Thus we may conclude that butorphanol can also be used for intraoperative analgesia in neurosurgical operations. It is associated with statistically better haemodynamics and earlier recovery when used with propofol as com­pared to thiopentone-isoflurane anaesthesia.



 
   References Top

1.Mosley CA, Dyson D,Smith DA .The cardiovascular dose-response effects of isoflurane alone and combined with butorphanol in the green iguana (Iguana iguana). Anesthesia and Analgesia 2004;31:64-72.  Back to cited text no. 1      
2.Del Pizzo A: A double blind study of the effect of butorphanol compared with morphine in balanced ana­esthesia. Can Anaesth Soc 1978;25:392.  Back to cited text no. 2      
3.Nagashima H,Karamanian A, Malovany R, et al. Respi­ratory and circulatory effects of intravenous butorphanol and morphine.Clin Pharmacol Ther 1976;19:738.  Back to cited text no. 3      
4.Pandit SK, Kothary SP. Comparison of fenatnyl and butorphanol for outpatient anesthesia. Can J Anesth 1987; 34: 130-4.  Back to cited text no. 4      
5.Laffey DA, Kay NH. Premedication with butorphanol: A comparison with morphine. Br J Anaesth 1984; 56: 363.  Back to cited text no. 5      
6.Sung YF, Weinstein MS, Ghanl GA. Balanced Anaes­thesia: A comparison of butorphanol and morphine. Southern Medical Journal 1984;77: 180-182.  Back to cited text no. 6      
7.Chari P, Ghai B. Comparison of butorphanol and thio­pentone vs fentanyl and thiopentone for laryngeal mask airway insertion. Journal of Clinical Anesthesia 2006; 18: 8-11.  Back to cited text no. 7      
8.Agarwal A, Raza M, Dhiraaj S,et al. Pain During Injec­tion of Propofol: The effect of prior administration of Butorphanol. Anesth Analg 2004; 99: 117-119.  Back to cited text no. 8      
9.McClune S, McKay AC, Wright PM,et al. Synergistic interaction between midazolam and propofol. Br J Anaesth 1992; 69:240-5.  Back to cited text no. 9      
10.Oliver HG Wilder-Smith, Ravussin PA, Decosterd LA, Despland PA et al. Midazolam premedication reduces propofol dose requirements for multiple anesthetic end­points. Can J Anesth 2001; 48: 439-45.  Back to cited text no. 10      
11.Grounds RM, Tmigley AJ, Carli F, et al. The haemodynamic effects of intravenous induction. Com­parison of the effects of thiopentone and propofol. Anaesthesia 1985; 40: 735-40.  Back to cited text no. 11      
12.Coley S, Mobley K, Fell D,et al. Sympathoadrenal re­sponses in tracheal intubation after thiopentone or propofol. Br J Anaesth 1987; 59: 653-60.  Back to cited text no. 12      
13.Todd MM, Marner DS, Sokoll MD, Maktabi MA, Hindman BJ, Scamman FL, Kirchner J. A prospective comparative trial of three anesthetics for elective su­pratentorial craniotomy. Propofol/ fentanyl, isoflurane/ nitrous oxide and fentanyl / nitrous oxide. Anesthesiol­ogy 1993; 78: 1005-20.  Back to cited text no. 13      
14.Van HJ, Van AH. Anesthesia for craniotomy: Total intra­venous anesthesia with propofol and alfentanil com­pared to anesthesia with thiopental sodium, isoflurane, fentanyl and nitrous oxide. Clinical Anesthesia 1991;3:131-6.  Back to cited text no. 14      
15.Billard V, Moulla F, Bourgain JL, et al. Hemodynamic response to induction and intubation: Propofol / fenta­nyl interaction. Anesthesiology 1994; 84: 1384-93.  Back to cited text no. 15      
16.Ebert TJ, Robinson BJ,et al. Recovery from sevoflurane anesthesia: A comparison to isoflurane and propofol anesthesia. Anesthesiology 1998; 89:1524-31.  Back to cited text no. 16      
17.Alain G, Francois G, Daniel B et al. Sevoflurane provides faster recovery and post operative neurosurgical as­ sessment than isoflurone in long-duration neurosurgi­cal cases. Anesth Analg 2002; 95: 1384-8.  Back to cited text no. 17      
18.Valance J. Recovery and discharge of patients after long propofol infusion vs isoflurane anaesthesia for long ambulatory surgery. Acta Anaesthesilogica Scandinavica 1992; 36: 530-3.  Back to cited text no. 18      


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2], [Table 3]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
    Introduction
    Methods
    Results
    Discussion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed2074    
    Printed187    
    Emailed0    
    PDF Downloaded402    
    Comments [Add]    

Recommend this journal