Indian Journal of Anaesthesia  
About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions
Home | Login  | Users Online: 2377  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size    




 
 Table of Contents    
CLINICAL INVESTIGATION
Year : 2013  |  Volume : 57  |  Issue : 2  |  Page : 175-179  

Techniques of preoxygenation in patients with ineffective face mask seal


Department of Anaesthesiology and Critical Care, Jawaharlal Institute of Postgraduate Medical Education and Research Centre, Pondicherry, India

Date of Web Publication15-May-2013

Correspondence Address:
Pankaj Kundra
DII/21, J.I.P.M.E.R Campus, Pondicherry - 605 006
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0019-5049.111847

Rights and Permissions
 

Background: Ineffective face mask seal is the most common cause for suboptimal pre-oxygenation. Room air entrainment can be more with vital capacity (VC) breaths when the mask is not a tight fit. Aims: This study was designed to compare 5 min tidal volume (TV) breathing and eight VC breaths in patients with ineffective face mask seal. Methods: Twenty eight ASA I adults with ineffective face mask seal were randomized to breathe 100% oxygen at normal TV for 5 min (Group TV) and eight VC breaths (Group VC) in a cross over manner through circle system at 10 L/min. End tidal oxygen concentration (EtO 2 ) and arterial blood gas analysis was performed to evaluate oxygenation with each technique. Statistical Analysis: Data were analysed using SPSS statistical software, version 16. Friedman's two-way analysis of variance by ranks was used for non-parametric data. Results: Significant increase in EtO 2 (median 90) and PaO 2 (228.85) was seen in group TV when compared to group VC (EtO 2 median 85, PaO 2 147.65), P<0.05. Mean total ventilation volume in 1 min in group VC was 9.4±3.3 L/min and more than fresh gas flow (10 L/min) in seven patients. In group TV, the fresh gas flow (50 L/5 min) was sufficient at normal TV (mean total ventilation in 5 min 36.7±6.3 L/min). Conclusions: TV breathing for 5 min provides better pre-oxygenation in patients with ineffective mask seal with fresh gas flow of 10 L/min delivered through a circle system.

Keywords: Face mask, pre-oxygenation, tidal volume, vital capacity


How to cite this article:
Kundra P, Stephen S, Vinayagam S. Techniques of preoxygenation in patients with ineffective face mask seal. Indian J Anaesth 2013;57:175-9

How to cite this URL:
Kundra P, Stephen S, Vinayagam S. Techniques of preoxygenation in patients with ineffective face mask seal. Indian J Anaesth [serial online] 2013 [cited 2019 Aug 17];57:175-9. Available from: http://www.ijaweb.org/text.asp?2013/57/2/175/111847


   Introduction Top


Pre-oxygenation techniques require a tightly fitting face mask, and do not account for the leaks that occur frequently in practice. [1],[2],[3] Leaks have been reported in 10-11.5% of subjects with no facial anomalies and normal dentition. [4] Leak around the mask is expected more frequently during pre-oxygenation of patients who are edentulous, have beards or moustaches, have a nasogastric tube in place, or cooperate poorly. The commonest reason for not achieving a maximum alveolar oxygen concentration during pre-oxygenation is an ineffective face mask seal which causes a leak that allows air entrainment into the circuit and dilutes the oxygen present. [5],[6],[7]

The techniques used commonly for pre-oxygenation are breathing of 100% O 2 at normal tidal volume (TV) for 3-5 min [6] and eight vital capacity (VC) breaths in 1 min. [5],[6],[8],[9] Both techniques are equally effective. [6],[8] However, in conditions where a leak around the face mask is unavoidable, both TV and eight deep breaths techniques have yielded suboptimal pre-oxygenation. [3],[5],[7]

We hypothesise that in the absence of a good face mask seal, the fresh gas flow might not be sufficient to meet the peak inspiratory flow generated during VC breaths of the patient. Consequently, room air is entrained to meet the patient's demand resulting in dilution of the inspired O 2 concentration. On the other hand, when breathing at normal TV the delivered fresh gas flows are sufficient to meet the minute volume requirements with lesser dilution of inspired O 2 .

This study was designed to compare the efficacy of these two techniques of pre-oxygenation in patients with an ineffective face mask seal.


   Methods Top


This study was conducted in a selected population of 28 ASA status I adults of either sex scheduled for elective major surgery. After obtaining informed consent, patients with anticipated difficult mask ventilation in whom maintaining a satisfactory face mask seal was not possible (presence of beard, nasogastric tube, large nasal bridge, facial anomalies and lack of teeth, but normal airway) were recruited, whereas those with pre-existing respiratory/cardiac diseases, anticipated difficult airway, pregnancy, body weight beyond the 30% range of ideal body weight and uncooperative patients were excluded from the study.

All patients were pre-medicated with oral Tab. Diazepam 0.2 mg/kg, Tab. Famotidine 20 mg, and Tab. Metoclopramide 10 mg the night before and on the morning of the surgery. In addition, intramuscular Morphine 0.15 mg/kg was given half an hour before the surgery. In the operating theatre, baseline electrocardiogram, heart rate, mean arterial pressure, and hemoglobin oxygen saturation (SpO 2 ) were recorded using Datex-Ohmeda S/5 compact anaesthesia monitor (Datex-Ohmeda Inc., 3 Highland Derive, Tewskbury, MA 1876). After performing Allen's test a 20 gauge arterial cannula was secured under local anaesthesia to obtain multiple arterial samples for recording arterial blood gases during the course of the study.

The study was conducted as a cross over design after taking the institutional ethics committee approval. Written informed consent was taken from all patients recruited for the study. The patients were randomly assigned to receive pre-oxygenation by two techniques. A sealed envelope method was used to decide the order of pre-oxygenation technique. Patients assigned to TV group (Group TV) were instructed to breathe at normal TV for 5 min through a tightly held mask. A 10 min stabilization period was allowed with room air breathing to allow the PaO2 to come back to baseline value before crossing over to Group VC. Similarly, patients belonging to VC group (Group VC) were first instructed to take eight VC breaths, which was preceded by maximal exhalation and then followed by 10 min room air breathing before they crossed over to the TV group. All 28 patients underwent both techniques of pre-oxygenation with 14 of them doing TV breathing first and the other 14 doing VC breathing first [Figure 1]. Pre-oxygenation was carried out with 10 litres of fresh gas flow using the circle system. The circuit was primed with 100% O 2 by occluding the patient end, the adjustable pressure limiting valve fully closed and discharging the oxygen flush thrice thereby allowing the reservoir bag to fill up. The sensor of the spirometer was connected to the mask of the patient and inspired and expired volumes during both techniques were noted.
Figure 1: Consort flow chart

Click here to view


End tidal oxygen concentration (EtO 2 ) was recorded at the patient end of the circuit before and after each technique of pre-oxygenation. Following the 2 nd technique of pre-oxygenation, rapid sequence induction (RSI) was performed with Sellick's manoeuvre. Anaesthesia was induced with a sleep dose of 2.5% thiopentone and suxamethonium was used to facilitate tracheal intubation. Time of RSI (from the beginning of induction to completion of tracheal intubation) was noted in all 28 patients. Maintenance of anaesthesia was continued with an inhalational agent and 66% nitrous oxide in 33% oxygen through circle system.

Data were collected and analysed using SPSS statistical software, version 16. Friedman's two-way analysis of variance by ranks was used for non-parametric data. P>0.05 was considered as statistically significant. Postpriori response of matched pairs was normally distributed with standard deviation of 59.85. The true difference in the mean response of matched pairs was 45.71 and 28 pairs of subjects to be able to reject the null hypothesis that this response difference is zero with probability (power) 0.82. The Type I error probability associated with this test of this null hypothesis is 0.05.


   Results Top


Patients between 18-65 years undergoing major elective surgeries were included in this study [Table 1]. Baseline TV and VC were comparable in both the groups during crossover. Time for RSI was similar in both groups [Table 2]. The commonest cause of leak around the mask was the presence of nasogastric tube (35.7%). All the patients had one or more factors that contributed to an ineffective face mask seal and leak as observed by the improper filling of the reservoir bag and a difference between the expired and inspired TVs. Seven patients had more than one factor causing an ineffective face mask seal [Table 3].
Table 1: Physical characteristics of study groups

Click here to view
Table 2: Baseline parameters of study groups

Click here to view
Table 3: Predictors of ineffective face mask seal in study groups

Click here to view


The baseline EtO 2 was comparable. A greater rise in EtO 2 was noticed after completion of pre-oxygenation by TV technique (median 90) when compared to VC technique (median 85), P<0.05. After the first technique, patients were allowed to breathe room air for 10 min and the decline in EtO 2 was again similar in both the groups.

The baseline PaO 2 values were similar in both groups. However, PaO 2 increased from 89.75-318.60 mm Hg and 90.60-238.25 mm Hg in group TV and group VC respectively; P<0.05 [Figure 2]. Similarly, the change in PaO 2 from baseline revealed a significant increase in PaO 2 (228.85) in group TV when compared to the increase in PaO 2 that occurred in group VC (147.65), P<0.05. When the patients were left to breathe room air for 10 min after completion of the 1 st technique, the PaO 2 values remained higher than the baseline value but this difference was similar in both groups. Similarly, after 2 nd technique, PaO 2 increased from 102.70-305.30 mm Hg and 100.65-217.30 mm Hg in group TV and group VC respectively; P<0.05 [Figure 3].
Figure 2: Box and whisker plot illustrating partial pressure of oxygen in both groups; ◦ – Outliers more than 1.5 times the interquartile range; * – Extremes more than three times the interquartile range (# – P<0.05. TQ1 – Technique 1, TQ2 – Technique 2)

Click here to view
Figure 3: Comparison of tidal volume breathing and vital capacity breathing preoxygenation techniques on total ventilation volumes. (FGF – Fresh Gas Flow)

Click here to view


In seven patients (25%) in the group VC, the total volume of minute ventilation (mean 9.4±3.3 L/min) during the 8 VC breaths/min was more than the delivered fresh gas flow (10 L/min). On the contrary, fresh gas flow of 10 L/min (50 L in 5 min) was sufficiently higher than the total volume of minute ventilation over 5 min (mean total ventilation in 5 min was 36.7±6.3 L/min) in all patients belonging to group TV [Figure 3].


   Discussion Top


We have demonstrated that in patients with an ineffective face mask seal, TV breathing for 5 min with a 10 L/min fresh gas flow through a circle system provides better oxygen reserve than eight VC breaths taken in 1 min.

Factors affecting the efficacy of pre-oxygenation include FiO 2 , the duration of breathing and the ratio of alveolar ventilation to functional residual capacity (time constant). [6] The common reasons for failure to achieve a FiO 2 close to 1.0 include inadequate time for pre-oxygenation, leak under face mask, use of systems incapable of delivering high FIO 2 and rebreathing of exhaled gases when low fresh gas flow is used with a circle system. [1],[3],[6],[10] Gagnon [7] demonstrated that a leak as small as 4 mm in diameter was large enough to prevent achieving high EtO 2 values and can hinder pre-oxygenation significantly. They suggested that VC breathing might have two opposite effects in the presence of a leak. First, the 2 L reservoir bag would partially empty through the leak causing air to enter the circuit if fresh gas flow was insufficient during a VC breath. This would worsen the efficiency of pre-oxygenation with VC breath than with TV breathing. On the other hand, during a VC breath, a large negative pressure was created resulting in a turbulent flow (flow proportional to the square root of the pressure gradient) through the leak than in the rest of the circuit where the flow was laminar (flow proportional to the pressure gradient). The investigators suggested that this "turbulent flow effect" made the leak less important with the VC breath and probably was greater than the empty reservoir effect.

According to our study, the fresh gas flow of 10 L/min was insufficient to meet the peak inspiratory demand of the patients breathing VC breaths. The mean total ventilation volume in 1 min with eight VC breaths was 9.4±3.3 L/min and was more than 10 L/min in seven patients. On the other hand, the fresh gas flow (50 L/5 min) was more than sufficient when the same patients were breathing at normal TV (mean total ventilation in 5 min 36.7±6.3). Minute ventilation during VC breaths may exceed the fresh gas flow resulting in rebreathing of exhaled gases in addition to room air entrainment in presence of improper mask seal [3],[6],[7] and fresh gas flow rates of 10 L/min may not be sufficient to achieve optimum pre-oxygenation. Although the anaesthetic circuits can deliver 100% oxygen concentration, the FiO 2 is influenced by the pattern of breathing, the breathing system used, leak around the mask and the fresh gas flow. [6] The bag is an essential component of the circuit because it provides the reservoir necessary when the patient's peak inspiratory flow (30 L/min) exceeds the fresh gas flow. If this reservoir is empty or partially empty, the patient's demand is compensated from leaks present under the face mask seal. [3],[6],[7]

EtO 2 can be used as a measure of pre-oxygenation in the presence of ineffective face mask seal since it is a continuous and non-invasive method. EtO 2 of expired gases cannot reach 100% due to the inevitable presence of moisture, CO 2 and N 2 . [6] An end tidal O 2 of 90-91% indicates maximal pre-oxygenation and a store of O 2 in the functional residual capacity of 2000 ml with a tight fitting face mask. [11] However, EtO 2 values can extend over a wide range from 0.76 to 0.97 [3],[4],[7] depending upon the amount of leak. Such that 0.9 EtO 2 can be achieved if the leak is small but lower values are likely to be observed when the leak is large. [4] Most studies aim for an EtO 2 value of 0.9 as the endpoint of optimal pre-oxygenation [4],[6],[12],[13] but there is insufficient data suggesting EtO 2 end point values in presence of the leak due to an improper face mask seal. The authors suggest that EtO 2 can help to gauge the extent of leak and pre-oxygenation should be performed for a longer time if the leak is large. In our study, significantly higher EtO 2 values were recorded with TVs breaths than with VC. Nevertheless, the likelihood of obtaining high EtCO 2 values should be kept in mind if sampling port is placed near to the site of fresh gas entry on the face mask. The ideal site would be placing a nasal cannula at the nostril connected to the sampling line which is not always possible. [4],[7] In our study, the sampling port was placed at the patient end of the circuit.

PaO 2 values after TV breathing were significantly higher than that with eight VC breaths in 1 min in our group of patients. PaO 2 is proportional to the alveolar PO 2 in the functional residual capacity which is the main oxygen store. Rapid techniques of pre-oxygenation (VC breaths) may result in rapid arterial oxygenation without a significant increase in the tissue oxygen stores and hence result in more rapid haemoglobin desaturation during subsequent apnea than would a longer period of TV pre-oxygenation. [14] Storage of oxygen in the tissue is more difficult to assess but assuming that Henry's law applies and that the partition coefficient for gases approximates the gas water coefficients, breathing 100% oxygen for 3 min or more significantly increases tissue oxygen stores. [8],[14] Deep breathing for a 2 min period is the practical upper limit and if extended beyond 2 min, can lead to hypocapnia causing an increase in oxygen consumption, cerebral vasoconstriction, dizziness and nausea. [9]


   Conclusions Top


To conclude, TV breathing for 5 min is a better method of ensuring optimal pre-oxygenation in patients with ineffective face mask seal with fresh gas flow of 10 L/min delivered through a circle system. EtO 2 may not accurately reflect the pre-oxygenation status but gives an indication of the presence of leak in the system.

 
   References Top

1.Benumof JL. Preoxygenation: Best method for both efficacy and efficiency. Anesthesiology 1999;91:603-5.  Back to cited text no. 1
    
2.Berthoud M, Read DH, Norman J. Pre-oxygenation - How long? Anaesthesia 1983;38:96-102.  Back to cited text no. 2
    
3.McGowan P, Skinner A. Preoxygenation - The importance of a good face mask seal. Br J Anaesth 1995;75:777-8.  Back to cited text no. 3
    
4.Berry CB, Myles PS. Preoxygenation in healthy volunteers: A graph of oxygen washin using end-tidal oxygraphy. Br J Anaesth 1994;72:116-8.  Back to cited text no. 4
    
5.Hamilton WK, Eastwood DW. A study of denitrogenation with some inhalation anesthetic systems. Anesthesiology 1955;16:861-7.  Back to cited text no. 5
    
6.Baraka A, Salem MR. Preoxygenation. In: Hagberg CA, editor. Benumof's Airway Management. 2 nd ed. St. Louis: Mosby Inc.; 2007. p. 303-18.  Back to cited text no. 6
    
7.Gagnon C, Fortier LP, Donati F. When a leak is unavoidable, preoxygenation is equally ineffective with vital capacity or tidal volume breathing. Can J Anaesth 2006;53:86-91.  Back to cited text no. 7
    
8.Baraka AS, Taha SK, Aouad MT, El-Khatib MF, Kawkabani NI. Preoxygenation: Comparison of maximal breathing and tidal volume breathing techniques. Anesthesiology 1999;91:612-6.  Back to cited text no. 8
    
9.Nimmagadda U, Chiravuri SD, Salem MR, Joseph NJ, Wafai Y, Crystal GJ, et al. Preoxygenation with tidal volume and deep breathing techniques: The impact of duration of breathing and fresh gas flow. Anesth Analg 2001;92:1337-41.  Back to cited text no. 9
    
10.Drummond GB, Park GR. Arterial oxygen saturation before intubation of the trachea. An assessment of oxygenation techniques. Br J Anaesth 1984;56:987-93.  Back to cited text no. 10
    
11.Campbell IT, Beatty PC. Monitoring preoxygenation. Br J Anaesth 1994;72:3-4.  Back to cited text no. 11
    
12.Hirsch J, Führer I, Kuhly P, Schaffartzik W. Preoxygenation: A comparison of three different breathing systems. Br J Anaesth 2001;87:928-31.  Back to cited text no. 12
    
13.Bhatia PK, Bhandari SC, Tulsiani KL, Kumar Y. End-tidal oxygraphy and safe duration of apnoea in young adults and elderly patients. Anaesthesia 1997;52:175-8.  Back to cited text no. 13
    
14.Nimmagadda U, Salem MR, Joseph NJ, Miko I. Efficacy of preoxygenation using tidal volume and deep breathing techniques with and without prior maximal exhalation. Can J Anaesth 2007;54:448-52.  Back to cited text no. 14
    


    Figures

  [Figure 1], [Figure 2], [Figure 3]
 
 
    Tables

  [Table 1], [Table 2], [Table 3]


This article has been cited by
1 The utility of non-invasive nasal positive pressure ventilators for optimizing oxygenation during rapid sequence intubation
Tae Hoon Kim,Sung Oh. Hwang,Yong Sung Cha,Oh. Hyun Kim,Kang Hyun Lee,Hyun Kim,Kyoung-Chul Cha
The American Journal of Emergency Medicine. 2016;
[Pubmed] | [DOI]
2 Efficacy of Nasal Cannula Oxygen as a Preoxygenation Adjunct in Emergency Airway Management
Clare Hayes-Bradley,Anthony Lewis,Brian Burns,Matt Miller
Annals of Emergency Medicine. 2015;
[Pubmed] | [DOI]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
   Methods
   Results
   Discussion
   Conclusions
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed2728    
    Printed41    
    Emailed1    
    PDF Downloaded1001    
    Comments [Add]    
    Cited by others 2    

Recommend this journal