Indian Journal of Anaesthesia  
About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions
Home | Login  | Users Online: 5352  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size    




 
 Table of Contents    
BRIEF COMMUNICATION
Year : 2014  |  Volume : 58  |  Issue : 3  |  Page : 334-336  

Predictors of postoperative cognitive dysfunction in adult patients undergoing elective cardiac surgery


1 Department of Anaesthesiology and Intensive Care, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Andhra Pradesh, India
2 Department of CT Surgery, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Andhra Pradesh, India

Date of Web Publication23-Jun-2014

Correspondence Address:
Dr. Madanmohan Shiraboina
Flat No. 301, Plot No. 4, Balakrishna Kuteer, Krishna Nagar Colony, Kakaguda, Picket, Secunderabad - 500 009, Andhra Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0019-5049.135077

Rights and Permissions

How to cite this article:
Shiraboina M, Ayya S, Srikanth Y, Kumar R V, Durga P, Gopinath R. Predictors of postoperative cognitive dysfunction in adult patients undergoing elective cardiac surgery. Indian J Anaesth 2014;58:334-6

How to cite this URL:
Shiraboina M, Ayya S, Srikanth Y, Kumar R V, Durga P, Gopinath R. Predictors of postoperative cognitive dysfunction in adult patients undergoing elective cardiac surgery. Indian J Anaesth [serial online] 2014 [cited 2019 Dec 11];58:334-6. Available from: http://www.ijaweb.org/text.asp?2014/58/3/334/135077


   Introduction Top


Post-operative central nervous system dysfunctions persist as common complications with a significant impact on the patient's quality-of-life after cardiac surgery. [1] The incidence of post-operative cognitive dysfunction (POCD) ranges between 40% and 70% at the time of discharge from hospital., More than 20 risk factors have been identified for POCD, but it can occur even in the absence of these high-risk factors.

The aim of our current study was to evaluate the risk factors for the development of POCD in patients undergoing cardiac surgery with cardiopulmonary bypass (CPB) who were at low-risk of developing POCD.


   Methods Top


After obtaining institutional ethical committee approval, patients aged over 30 years undergoing elective cardiac surgery with Katz grading [2] of six were included in this prospective observational study, between May and December 2012. Exclusion criteria included previous cardiothoracic surgery, history of stroke or transient ischemic attack, carotid stenosis >50%, severe hypertension (>180/110 mm of Hg) at admission, renal dysfunction (serum creatinine >2 mg/dl), active hepatic disease, severe left ventricular dysfunction (ejection fraction <30%), pre-operative mini-mental state examination (MMSE) score <25, concomitant surgery on great vessels, pre-operative atrial fibrillation, pre-operative blood transfusions after admission, patients who remained intubated for >24 h after surgery and patients who died within 7 days post-operatively.

Mini-mental state examination [3] was performed on the day before surgery, 24 h after extubation and on the 7 th post-operative day. MMSE score ≤24 was considered to be cognitive dysfunction. All patients were managed as per the institutional protocol. All patients were pre-medicated with ranitidine (150 mg PO), and alprazolam (0.5 mg PO). Anaesthesia was induced with midazolam (0.1 mg/kg), fentanyl (5 μg/kg), thiopentone sodium (2-4 mg/kg), and rocuronium (0.6 mg/kg). Anaesthesia was maintained with isoflurane (1-2 minimum alveolar concentration), midazolam (0.01 mg/kg/h as bolus-during CPB) and fentanyl (1.5 μg/kg/h as bolus). Intraoperative monitoring included electrocardiogram, invasive arterial pressure, central venous pressure, pulmonary arterial pressure (for coronary artery bypass grafting), pulseoximetry (SpO 2 ) temperature, end-tidal expiratory CO 2 and blood gas analysis.

On CPB, mean blood pressure was kept above 50 mm Hg for normotensive patients and above 60 mm Hg for hypertensive patients [4] throughout the procedure. Blood sugars were maintained at <200 mg/dl. All patients were cooled to 28-32°C. In-line arterial filter or bubble trap was used. Blood was added when haemoglobin (Hb) was <7 g/dl on CPB, and <10 g/dl after bypass. All patients were rewarmed to 36.5°C.

Statistical analyses were performed with SPSS version 17 (SPSS, Chicago, IL, USA). Univariate analyses were performed by comparing patients with and without POCD (MMSE ≤ 24) using ǀ 2 test, Fisher exact test, Student's t test, the Mann-Whitney U-test wherever applicable. P < 0.05 was considered as significant. Multivariate analyses were performed by forward stepwise logistic regression using the variables that were found to be significant on univariate analysis to identify independent predictors for POCD. Receiver operated curve analysis was performed for the number of blood units transfused and POCD to identify the best cut-off of the number of blood transfusions for POCD.


   Results Top


Of 121 patients, 21 were excluded as they were having a MMSE score <25. Further 15 patients were excluded; due to death (5), non-fatal stroke (2), reoperation (4), and reintubation (4). The association of the patient characteristics, examined comorbidities, intra-operative and post-operative factors and peri-operative and risk factors and POCD are shown in [Table 1].
Table 1: Prevalence of risk factors in cardiac patients with post-operative delirium (univariate analysis)

Click here to view


Variables with significant association with POCD were considered for multivariate 'logistic regression model', which identified the number of blood transfusion, as a single independent predictor for the development of POCD on the 7 th post-operative day [Table 2].
Table 2: Multivariate, stepwise logistic regression analysis for predictors of POCD after cardiac surgery

Click here to view



   Discussion Top


During cardiac surgery blood loss occurs from the surgical site, haemodilution and as the blood volume left in venous reservoir at the end of surgery, which necessitates blood transfusion. Cerebral embolization of the micro particulates (MPs) present in the stored blood is the main reason for cerebral injury. Red blood cells stored in the blood bank undergo a series of changes and release many potentially hazardous products, resulting in the so-called 'storage lesion.' [5] Studies has shown that, micro particulates released from blood cells exhibited strong procoagulant and proinflammatory activities. [6],[7],[8],[9] The proinflammatory property of microparticulates (MP) causes cognitive dysfunction after CPB. MPs also contain Hb, which is a potent scavenger of nitric oxide (NO), which has been shown to modulate vascular contractility through NO pathway. [10]

In this study, we also identified that, patients with POCD had low peri-operative Hb, higher post-operative lactate values (24 h after surgery), and more than 2 blood transfusions. Even though blood loss and transfusions are not completely avoidable during cardiac surgery, measures, which will reduce the blood transfusion like use of antifibrinolytics and cell salvage techniques are advisable to reduce the incidence of POCD.

Limitations of this study are a small sample size, absence of intraoperative neurological monitoring, use of MMSE alone as neuropsychological test and cognitive function assessed only in the immediate post-operative period. The MMSE test was chosen because it is easy to perform and can be done even in patients with low educational standards.


   Conclusion Top


We conclude that POCD is a known, but less emphasised complication of blood transfusion. Multiple blood transfusions can predispose to POCD even in the absence of clinical conditions known to produce POCD. It is important to understand the burden of the POCD and reduce the need for transfusion in cardiac surgery.

 
   References Top

1.Newman MF, Mathew JP, Grocott HP, Mackensen GB, Monk T, Welsh-Bohmer KA, et al. Central nervous system injury associated with cardiac surgery. Lancet 2006;368:694-703.  Back to cited text no. 1
    
2.Gerrard PThe hierarchy of the activities of daily living in the Katz index in residents of skilled nursing facilities, J Geriatr Phys Ther 2013; 36:87-91.  Back to cited text no. 2
    
3.Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189-98.  Back to cited text no. 3
    
4.Murphy GS, Hessel EA 2 nd , Groom RC. Optimal perfusion during cardiopulmonary bypass: An evidence-based approach. Anesth Analg 2009;108:1394-417.  Back to cited text no. 4
    
5.Hess JR. Red cell storage. J Proteomics 2010;73:368-73.  Back to cited text no. 5
    
6.Leroyer AS, Anfosso F, Lacroix R, Sabatier F, Simoncini S, Njock SM, et al. Endothelial-derived microparticles: Biological conveyors at the crossroad of inflammation, thrombosis and angiogenesis. Thromb Haemost 2010;104:456-63.  Back to cited text no. 6
    
7.Rubin O, Crettaz D, Tissot JD, Lion N. Microparticles in stored red blood cells: Submicron clotting bombs? Blood Transfus 2010;8 Suppl 3:s31-8.  Back to cited text no. 7
    
8.Horstman LL, Jy W, Bidot CJ, Nordberg ML, Minagar A, Alexander JS, et al. Potential roles of cell-derived microparticles in ischemic brain disease. Neurol Res 2009;31:799-806.  Back to cited text no. 8
    
9.Burnier L, Fontana P, Kwak BR, Angelillo-Scherrer A. Cell-derived microparticles in haemostasis and vascular medicine. Thromb Haemost 2009;101:439-51.  Back to cited text no. 9
    
10.Gladwin MT, Kim-Shapiro DB. Storage lesion in banked blood due to hemolysis-dependent disruption of nitric oxide homeostasis. Curr Opin Hematol 2009;16:515-23.  Back to cited text no. 10
    



 
 
    Tables

  [Table 1], [Table 2]


This article has been cited by
1 The “Aging Factor” Eotaxin-1 (CCL11) Is Detectable in Transfusion Blood Products and Increases with the Donor’s Age
Julia Hoefer,Markus Luger,Christian Dal-Pont,Zoran Culig,Harald Schennach,Stefan Jochberger
Frontiers in Aging Neuroscience. 2017; 9
[Pubmed] | [DOI]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
   Introduction
   Methods
   Results
   Discussion
   Conclusion
    References
    Article Tables

 Article Access Statistics
    Viewed1513    
    Printed20    
    Emailed0    
    PDF Downloaded394    
    Comments [Add]    
    Cited by others 1    

Recommend this journal