Indian Journal of Anaesthesia  
About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions
Home | Login  | Users Online: 5022  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size    

 Table of Contents    
Year : 2015  |  Volume : 59  |  Issue : 1  |  Page : 9-14  

Targeted temperature management in brain protection: An evidence-based review

1 Department of Trauma and Emergency Medicine, Division of Anesthesia and Critical Care, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
2 Director and Head, Department of Neurosurgery, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India

Date of Web Publication16-Jan-2015

Correspondence Address:
Dr. Swagata Tripathy
Department of Trauma and Emergency Medicine, All India Institute of Medical Sciences, Sijua, Dumuduma, Bhubaneswar - 751 019, Odisha
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0019-5049.149442

Rights and Permissions

Targeted temperature management (TTM) for neuroprotection involves maintaining the temperature of the brain at predetermined levels by various techniques. It is aimed at avoiding the harmful effects of hyperthermia on the brain and at exploiting the protective effects of lower tissue temperature. There has been an explosion in the use of TTM for neuroprotection in a variety of clinical scenarios apart from the commonly accepted fields of resuscitation and ischaemic, hypoxic encephalopathy. This review briefly discusses the evidence base for TTM. The focus is on various areas of application for neuroprotection, the practical issues pertaining to TTM implementation, the recent data that support it and the present areas of controversy.

Keywords: Endovascular cooling, hypothermia, neuroprotection, targeted temperature management, therapeutic temperature management

How to cite this article:
Tripathy S, Mahapatra AK. Targeted temperature management in brain protection: An evidence-based review. Indian J Anaesth 2015;59:9-14

How to cite this URL:
Tripathy S, Mahapatra AK. Targeted temperature management in brain protection: An evidence-based review. Indian J Anaesth [serial online] 2015 [cited 2020 Mar 29];59:9-14. Available from:

   Introduction Top

In the year 1938, Fay was among the first to report 'extremely gratifying results' of cooling the brain by irrigating it directly with ice water. [1] Targeted temperature management (TTM) traditionally refers to deliberate reduction of the core body temperature to a range of 32-34°C (89.6-93.2°F) in patients who don't regain consciousness after return of spontaneous circulation (ROSC) following a cardiac arrest. Decreasing the temperature of the target tissue may involve therapeutic hypothermia (TH) in normothermic patients (mild hypothermia of 33-35°C) or induced normothermia (cooling patients to 37°C) in hyperthermic patients. The term TTM now encompasses both these situations. [2] TTM has been used in many settings, such as for neuroprotection, in cardiac surgeries and hyperthermic emergencies like heat strokes, etc. The purpose of this review is to provide a concise update on the modalities, complications and the areas of clinical application of TTM for brain protection and to make the reader aware of the evidence base for the same. The following databases were accessed: Embase, Medline, CINAHL, Cochrane Central Register of Controlled Trials and the Cochrane Database of Systematic Reviews; key words used to search the databases were 'therapeutic hypothermia'', 'induced hypothermia', 'cooling post-cardiac arrest' and 'targeted temperature management'.

   Mechanism of Action of Hypothermia In Neuroprotection Top

Cooling has been shown to reduce primary injury and prevent secondary injury in animal models of brain insult and certain clinical settings. [3] Hypothermia affects pathways leading to excitotoxicity, apoptosis, inflammation and free radical production, as well as blood flow, metabolism and blood-brain barrier integrity. Hypothermia may also influence neurogenesis, gliogenesis and angiogenesis following the injury [Figure 1]. It is likely that no single factor can explain the neuroprotection provided by hypothermia, but understanding its myriad effects may shed light on its neuroprotective mechanisms. [4]
Figure 1: Neuroprotective mechanism of hypothermia - bold arrows depict the multiple stages at which hypothermia decreases the effects of the primary insult

Click here to view

   Establishment of Hypothermia Top

The establishment of hypothermia therapy (HT) can be divided into three phases: induction, maintenance and re-warming [Figure 2]. The goal of the induction phase is to achieve the target body temperature as quickly as possible for which modalities may vary [Table 1]. The target temperature is controlled at the set levels during the maintenance phase of TTM for duration of 24-48 h depending on institute protocols. At the end of the maintenance phase, the patient's temperature is allowed to rise gradually at a rate of 0.15-0.5°C per hour. The optimal time point to start or terminate hypothermia in different clinical situations is still not known. The current European resuscitation guidelines recommend starting hypothermia as soon as possible after ROSC.
Figure 2: Three phases of targeted temperature management

Click here to view
Table 1: Cooling techniques

Click here to view

[Table 2] lists the complications known to be associated with cooling during TTM
Table 2: Complications of cooling

Click here to view


In healthy humans, peripheral vasoconstriction is triggered at 36.5°C and shivering starts at 35.5°C. Temperature thresholds for vasoconstriction and shivering are often higher than normal in brain-injured patients. Control of the shivering is essential for effective cooling, as shivering increases oxygen consumption and fights the cooling process making attaining target temperature difficult. It is extremely uncomfortable. Pharmacological strategies to counteract such a response are to use benzodiazepines for sedation, an opioid analgesic and systemic neuromuscular blockade for muscle relaxation. The combination of meperidine (± buspirone), skin warming and magnesium infusion can be used to reduce shivering and avoid thermal discomfort. [3]

Cardiovascular manifestations

Induced hypothermia may result in bradycardia, vasoconstriction and a slight increase in arterial pressure after the induction phase due to increased systemic vascular resistance. Post-cardiac arrest victims may develop hypotension as a part of the post-cardiac arrest syndrome of myocardial dysfunction, ischaemia reperfusion or cold diuresis. Although TTM has not been associated with the development of arrhythmias in randomised controlled trials or in observational studies, persistent arrhythmias can develop as a consequence of over-cooling (≤32°), electrolyte imbalance, or tubular dysfunction. [3],[11]


Data from clinical studies do not provide uniform answers whether the chance of increase in the rate of infections as a consequence of hypothermia-induced impairment of cellular and humoral immunity is of clinical significance. The risk appears to increase with prolonged use, and careful monitoring is required in these patients. Prophylactic antibiotics may be considered in high-risk patients, who receive hypothermia for a prolonged period. [12]


Hypothermia might result in an increased risk of bleeding as a result of impaired platelet function, thrombopenia and impairment of the coagulation cascade. Such risks have not been observed, however, in clinical practice when hypothermia has been used in isolation or in combination with percutaneous coronary intervention techniques. [7] Although the risks may increase significantly in moderate-to-severe acidosis, no effects of hypothermia on coagulation have occurred in any patient as long as the temperature is ≥35°C, and patients at very high bleeding risk can safely be cooled to this temperature. [13]

Alterations in drug metabolism

Hypothermia leads to slowing of a number of hepatic enzymes including the cytochrome P450. Therefore, drugs that are metabolised by the liver such as sedative and neuromuscular blocking agents will require dose modification. [3]

   Rewarming Top

Rewarming or cessation of active cooling techniques is the third phase of any form of TTM. Temperature control is important during rewarming. Warming the patient too quickly or allowing continued shivering may result in various complications [Table 3]. Controlled rewarming of 0.15 ° -0.5°C/h is recommended. Adverse consequences of rewarming on the whole body may seriously limit the protective effects of hypothermia, leading to secondary injury such as raised intracranial pressure and cognitive dysfunction among others. [14] Understanding, predicting, and managing possible systemic side-effects of rewarming is important for guaranteeing the efficacy of TTM.
Table 3: Complications of rewarming

Click here to view

   Clinical Areas of Application of Targeted Temperature Management Top

Prehospital cardiopulmonary resuscitation and post-resuscitation

Mild hypothermia is widely used in the treatment of successfully resuscitated patients after cardiac arrest [Table 4]. Two clinical landmark studies in 2002 demonstrated that the use of TH after cardiac arrest due to ventricular fibrillation decreases mortality and improves neurological outcome. Hypothermia can be efficiently induced in the prehospital environment, and the use of mild TH is gaining acceptance. The use of TH after cardiac arrest as soon as possible after ROSC is now recommended. [15],[16],[17],[18] A recent trial concludes that in unconscious survivors of out-of-hospital cardiac arrest of presumed cardiac cause, hypothermia at a targeted temperature of 33°C did not confer a benefit as compared with a targeted temperature of 36°C. [19]
Table 4: Inclusion and exclusion criteria for TTM after cardiac arrest

Click here to view

Cooling in neurosurgery, neurology, and the intensive care unit

Traumatic brain injury

Clinical trials of hypothermia and temperature management for severe traumatic brain injury (TBI) are divided into trials in which hypothermia is used to treat elevated intracranial pressure [20] and those in which hypothermia is intended as a neuroprotectant, irrespective of intracranial pressure. The brain trauma foundation guidelines summarise that prophylactic hypothermia may improve outcomes if maintained for 48 h or more; but lack in clear mortality benefits (level III evidence). Having enrolled 232 patients and observing no benefits of early induction of hypothermia, the national acute brain injury study hypothermia II (NABISH-II) trial was terminated for futility. [21] A subsequent subgroup analysis of patients in the NABISH I and II trials demonstrated that induction of hypothermia to 35°C before or soon after craniotomy with maintenance at 33°C for 48 h thereafter may improve outcome of patients with haematomas and severe TBI. [22]

Spinal cord injury

In animal models with spinal cord injury, improvements in functional outcome associated with cooling have been reported, and hypothermia has been shown to increase the duration of ischemia required to produce neurological deficits. [23] Thermoregulatory disturbances and fever due to other causes are common in these patients and if not controlled promptly may lead to worsening morbidity and mortality in this group. Hypothermia appears to be a promising treatment in this population as observed in small-scale human studies and needs to be studied in larger prospective clinical trials. [24],[25]

Acute ischaemic stroke

Although many arguments favour the successful translation of TH to stroke patients, available data from clinical studies are not sufficient to recommend TTM for the routine treatment of acute ischemic stroke. The EuroHYP-1 study-an ongoing trial, with 1500 target patients will investigate whether hypothermia administered for 24 h, will improve the neurological outcome in ischemic stroke patients treated within 6 h from symptom onset; the ICTuS trial similarly aims at employing endovascular hypothermia induced within 6 h of stroke onset. [26],[27]

Intracranial haemorrhage

Notwithstanding the concerns of hypothermia on platelet function and coagulation profile, experimental data indicate that TTM is neuroprotective after intra cerebral haemorrhage (ICH) and reduces perihaemorrhagic oedema. [28] There is no large-scale data to recommend the use of hypothermia in this group. The results of the on-going cooling in ICH (CINCH) trial are awaited. The CINCH trial will evaluate 50 patients with large primary ICH of the basal ganglia or thalamus within 6-18 h after symptom onset randomly allocated to TH or conventional temperature management. [29]

Cooling in the operation theatre and for subarachnoid haemorrhage

Deep intra-ischaemic hypothermia can be used in cardiothoracic and neurosurgery for the management of congenital heart disease, thoracic aneurysms, and intracranial aneurysms. Although hypothermia is often used during brain surgery, clinical efficacy has not yet been established. In a recent Cochrane review of cooling for cerebral protection during brain surgery, involving 1219 patients the authors found no evidence that hypothermia was either effective or unsafe when compared to normothermia. [30]

So far, the evidence of HT on improved outcome after subarachnoid haemorrhage (SAH) is limited. Intraoperative cooling has been abandoned in all but most carefully selected patients, based on the randomised intraoperative hypothermia study on aneurysm surgery in good-grade SAH patients. The Intraoperative Hypothermia for Aneurysm Surgery Trial applied HT in a randomised study in 1001 patients with good-grade SAH (World Federation of Neurological Surgeons 1-3); however, it found no improvement in neurological outcome 3 months after surgery. Furthermore, there was no evidence for the benefit of intraoperative HT on 24 h and 3 months outcome in patients who underwent temporary clipping. [31]

Therapeutic and prophylactic normothermia

Fever is a very frequent complication of intensive care treatment and an independent predictor of unfavourable outcome and mortality in most patients with an acute severe neurologic injury. [32] Aggressive treatment of fever in the intensive care unit without the side effects of TH led to the concept of controlled prophylactic normothermia-fever reduction with strict maintenance of the body temperature at 36.5°C. Prophylactic and the therapeutic normothermia has been attempted in various clinical scenarios leading to hyperpyrexia as in heat stroke, spinal cord injury, infections of the central nervous system and in refractory status epilepticus. [33],[34],[35] The results of the recent apparently 'negative' trial on hypothermia after cardiac arrest have also been discussed on the lines of possibility of active maintenance of temperature of control group at 36°C as being a form of prophylactic normothermia. [19]

Neuroprotection in paediatric and neonatal group

Therapeutic hypothermia has proved to be beneficial in term neonates after hypoxic-ischemic encephalopathy (HIE) and in children with (TBI). Recent reports have also investigated TH for the treatment of super refractory status epilepticus. TH may also represent a useful tool when conventional therapy fails to achieve an effective control of elevated intracranial pressure. [36]

   Conclusion Top

There is now a large body of evidence to suggest that temperature regulation and induced hypothermia can be used to limit or prevent injury to the brain in a properly selected category of patients. Clearly, the variables of timing of the initiation of cooling, cooling technique, rate, depth, length of cooling and rewarming all have some effect on mortality and morbidity. However, at this time, these variables are not well studied and are the focus of several current experimental and clinical trials. Evidence in the form of large randomised control trials is needed to enable formal protocols and recommendations in areas other than post-cardiac arrest resuscitation and neonatal HIE.

   References Top

Fay T. Early experiences with local and generalized refrigeration of the human brain. J Neurosurg 1959;16:239-59.  Back to cited text no. 1
Schmutzhard E, Fischer M, DietmannA, Brössner G. Therapeutic hypothermia: The rationale. Crit Care 2012;16 Suppl 2:A2.  Back to cited text no. 2
Polderman KH, Herold I. Therapeutic hypothermia and controlled normothermia in the intensive care unit: Practical considerations, side effects, and cooling methods. Crit Care Med 2009;37:1101-20.  Back to cited text no. 3
Yenari MA, Han HS. Neuroprotective mechanisms of hypothermia in brain ischaemia. Nat Rev Neurosci 2012;13:267-78.  Back to cited text no. 4
Kim F, Olsufka M, Longstreth WT Jr, Maynard C, Carlbom D, Deem S, et al. Pilot randomized clinical trial of prehospital induction of mild hypothermia in out-of-hospital cardiac arrest patients with a rapid infusion of 4 degrees C normal saline. Circulation 2007;115:3064-70.  Back to cited text no. 5
Larsson IM, Wallin E, Rubertsson S. Cold saline infusion and ice packs alone are effective in inducing and maintaining therapeutic hypothermia after cardiac arrest. Resuscitation 2010;81:15-9.  Back to cited text no. 6
Delhaye C, Mahmoudi M, Waksman R. Hypothermia therapy: Neurological and cardiac benefits. J Am Coll Cardiol 2012;59:197-210.  Back to cited text no. 7
Flint AC, Hemphill JC, Bonovich DC. Therapeutic hypothermia after cardiac arrest: Performance characteristics and safety of surface cooling with or without endovascular cooling. Neurocrit Care 2007;7:109-18.  Back to cited text no. 8
Castrén M, Nordberg P, Svensson L, Taccone F, Vincent JL, Desruelles D, et al. Intra-arrest transnasal evaporative cooling: A randomized, prehospital, multicenter study (PRINCE: Pre-ROSC IntraNasal Cooling Effectiveness). Circulation 2010;122:729-36.  Back to cited text no. 9
de Waard MC, Biermann H, Brinckman SL, Appelman YE, Driessen RH, Polderman KH, et al. Automated peritoneal lavage: An extremely rapid and safe way to induce hypothermia in post-resuscitation patients. Crit Care 2013;17:R31.  Back to cited text no. 10
Nguyen HP, Zaroff JG, Bayman EO, Gelb AW, Todd MM, Hindman BJ, et al. Perioperative hypothermia (33 degrees C) does not increase the occurrence of cardiovascular events in patients undergoing cerebral aneurysm surgery: Findings from the Intraoperative Hypothermia for Aneurysm Surgery Trial. Anesthesiology 2010;113:327-42.  Back to cited text no. 11
Polderman KH. Is therapeutic hypothermia immunosuppressive? Crit Care 2012;16 Suppl 2:A8-20.  Back to cited text no. 12
Polderman KH. Hypothermia and coagulation. Crit Care 2012;16 Suppl 2:A20.  Back to cited text no. 13
Povlishock JT, Wei EP. Posthypothermic rewarming considerations following traumatic brain injury. J Neurotrauma 2009;26:333-40.  Back to cited text no. 14
Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002;346:549-56.  Back to cited text no. 15
Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 2002;346:557-63.  Back to cited text no. 16
ECC Committee, Subcommittees and Task Forces of the American Heart Association: American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2005;112:1-203.  Back to cited text no. 17
Cabanas JG, Brice JH, De Maio VJ, Myers B, Hinchey PR. Field-induced therapeutic hypothermia for neuroprotection after out-of hospital cardiac arrest: A systematic review of the literature. J Emerg Med 2011;40:400-9.  Back to cited text no. 18
Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, et al. Targeted temperature management at 33°C versus 36°C after cardiac arrest. N Engl J Med 2013;369:2197-206.  Back to cited text no. 19
Andrews PJ, Sinclair HL, Battison CG, Polderman KH, Citerio G, Mascia L, et al. European society of intensive care medicine study of therapeutic hypothermia (32-35°C) for intracranial pressure reduction after traumatic brain injury (the Eurotherm3235Trial). Trials 2011;12:8.  Back to cited text no. 20
Clifton GL, Valadka A, Zygun D, Coffey CS, Drever P, Fourwinds S, et al. Very early hypothermia induction in patients with severe brain injury (the National Acute Brain Injury Study: Hypothermia II): A randomised trial. Lancet Neurol 2011;10:131-9.  Back to cited text no. 21
Clifton GL, Coffey CS, Fourwinds S, Zygun D, Valadka A, Smith KR Jr, et al. Early induction of hypothermia for evacuated intracranial hematomas: A post hoc analysis of two clinical trials. J Neurosurg 2012;117:714-20.  Back to cited text no. 22
Lo TP Jr, Cho KS, Garg MS, Lynch MP, Marcillo AE, Koivisto DL, et al. Systemic hypothermia improves histological and functional outcome after cervical spinal cord contusion in rats. J Comp Neurol 2009;514:433-48.  Back to cited text no. 23
Levi AD, Green BA, Wang MY, Dietrich WD, Brindle T, Vanni S, et al. Clinical application of modest hypothermia after spinal cord injury. J Neurotrauma 2009;26:407-15.  Back to cited text no. 24
Dididze M, Green BA, Dietrich WD, Vanni S, Wang MY, Levi AD. Systemic hypothermia in acute cervical spinal cord injury: A case-controlled study. Spinal Cord 2013;51:395-400.  Back to cited text no. 25
Kollmar R, Gebhardt B, Schwab S. EuroHYP-1 trial: EU-funded therapy study on the effectiveness of mild therapeutic hypothermia for acute ischemic stroke. Nervenarzt 2012;83:1252-9.  Back to cited text no. 26
Lyden PD, Hemmen TM, Grotta J, Rapp K, Raman R. Endovascular therapeutic hypothermia for acute ischemic stroke: ICTuS 2/3 protocol. Int J Stroke 2014;9:117-25.  Back to cited text no. 27
MacLellan CL, Davies LM, Fingas MS, Colbourne F. The influence of hypothermia on outcome after intracerebral hemorrhage in rats. Stroke 2006;37:1266-70.  Back to cited text no. 28
Kollmar R, Juettler E, Huttner HB, Dörfler A, Staykov D, Kallmuenzer B, et al. Cooling in intracerebral hemorrhage (CINCH) trial: Protocol of a randomized German-Austrian clinical trial. Int J Stroke 2012;7:168-72.  Back to cited text no. 29
Milani WR, Antibas PL, Prado GF. Cooling for cerebral protection during brain surgery. Cochrane Database Syst Rev 2011;CD006638.  Back to cited text no. 30
Hindman BJ, Bayman EO, Pfisterer WK, Torner JC, Todd MM, IHAST Investigators. No association between intraoperative hypothermia or supplemental protective drug and neurologic outcomes in patients undergoing temporary clipping during cerebral aneurysm surgery: Findings from the Intraoperative Hypothermia for Aneurysm Surgery Trial. Anesthesiology 2010;112:86-101.  Back to cited text no. 31
Polderman KH. Induced hypothermia and fever control for prevention and treatment of neurological injuries. Lancet 2008;371:1955-69.  Back to cited text no. 32
Bouchama A. Pathogenetic mechanisms of heatstroke and novel therapies. Crit Care 2012;16 Suppl 2:A7.  Back to cited text no. 33
Schmutzhard E, Lackner P, Beer R, Fischer M, Dietmann A, Pfausler B. Temperature management in central nervous infection. Crit Care 2012;16 Suppl 2:A18.  Back to cited text no. 34
Tripathy S, Whitehead CF. Endovascular cooling for severe hyperthermia in cervical spine injury. Neurocrit Care 2011;15:525-8.  Back to cited text no. 35
Pietrini D, Piastra M, Luca E, Mancino A, Conti G, Cavaliere F, et al. Neuroprotection and hypothermia in infants and children. Curr Drug Targets 2012;13:925-35.  Back to cited text no. 36


  [Figure 1], [Figure 2]

  [Table 1], [Table 2], [Table 3], [Table 4]


    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

  In this article
    Mechanism of Act...
    Establishment of...
    Clinical Areas o...
    Article Figures
    Article Tables

 Article Access Statistics
    PDF Downloaded1242    
    Comments [Add]    

Recommend this journal