• Users Online: 2595
  • Print this page
  • Email this page


 
BRIEF COMMUNICATION
Year : 2010  |  Volume : 54  |  Issue : 4  |  Page : 350-351 Table of Contents     

Anaesthetic considerations in a child with rickets and craniosynostosis for linear strip craniectomy and frontal advancement


Department of Neuroanaesthesiology, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India

Date of Web Publication12-Aug-2010

Correspondence Address:
Rakesh Garg
Department of Neuroanaesthesiology, Neurosciences Centre, All India Institute of Medical Sciences, Ansari Nagar, New Delhi - 110 029
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0019-5049.68394

Rights and Permissions

How to cite this article:
Garg R, Khanna P, Pandia M P. Anaesthetic considerations in a child with rickets and craniosynostosis for linear strip craniectomy and frontal advancement. Indian J Anaesth 2010;54:350-1

How to cite this URL:
Garg R, Khanna P, Pandia M P. Anaesthetic considerations in a child with rickets and craniosynostosis for linear strip craniectomy and frontal advancement. Indian J Anaesth [serial online] 2010 [cited 2021 Jul 28];54:350-1. Available from: https://www.ijaweb.org/text.asp?2010/54/4/350/68394

Sir,

Craniosynostosis is the result of premature closure of the cranial vault sutures. [1],[2] Besides the functional impairment, there are often problems concerning the social integration of patients caused by the grotesque skull deformities. [3] Craniosynostosis can be nonsyndromic or syndromic (e.g. Apert's syndrome and Crouzon's syndrome). [2] Craniosynostosis has been observed in association with a number of maternal metabolic disorders including hyperthyroidism, rickets, Hurler syndrome, Morquio syndrome, beta-glucuronidase deficiency, mucolipidosis III, and a host of haematological disorders. [2],[3],[4] We report the anaesthetic considerations of a child of rickets and craniosynostosis planned for linear strip craniectomy and frontal advancement.

An 11-month-old male child weighing 6 kg presented in the neurosurgical clinics with chief complaints of progressively increasing bilateral proptosis since birth and abnormal shape of head since 3 months. He had a history of decreased sleep, increased sweating and increased frequency of micturition. Wrist X-ray showed widening of distal end of ulna, suggestive of rickets. He was administered vitamin D megadose. He continued to have persistently low calcium levels and phosphate levels.

The child was diagnosed with bilateral coronal craniosynostosis and it was planned to perform linear strip craniectomy and frontal advancement on the child. The respiratory and cardiovascular examination revealed no abnormality. On investigation, the haemoglobin was 7.2 g/dL and the child received two paediatric units of packed red cells transfusion and his haemoglobin improved to 11.2 g/dL. His serum calcium level was 8.9 mg/dL, phosphate level was 5.5 mg/dL and alkaline phosphate level was 980 IU.

In the operation room, routine monitors were attached. Anaesthesia was induced with 8% sevoflurane in oxygen and thereafter 22G intravenous access was secured. Then, 20 μg fentanyl and 20 mg rocuronium were administered intravenously. Airway was secured with size 4 mm ID endotracheal tube. Capnography and temperature monitoring were initiated Anaesthesia was maintained with 1% isoflurane in oxygen and nitrous oxide (50:50). The child was positioned for surgery. Top ups of fentanyl (total 30 μg) and rocuronium were administered, as guided by neuromuscular monitor. Intraoperatively, 50 mL of 20% mannitol was administered. Blood loss was 90 mL and was replaced with crystalloids adequately. The surgical duration was 4 hours. At the end of surgery, residual neuromuscular blockade was reversed and trachea extubated. The child had an uneventful recovery.

Our case of craniosynostosis was probably secondary to hypophosphataemic rickets. In our case, apart from cosmetic reason, considerations of the progressively increasing vision-threatening proptosis and risk of neurological impairment required urgent surgical repair. [1] The perioperative concerns in our patient included risk of corneal ulceration, airway related, rickets, air embolism, blood loss, and prolonged surgery with risk of head and neck oedema.

These patients should have had a complete multidisciplinary evaluation to rule out any syndromic association. Special attention should be directed to signs of increased intracranial pressure. [5] The poorly protected eye is exposed to the risk of corneal ulceration. The airway securing is difficult because of not only being an infant but also having abnormal facial features. The surgery on the head also had its implications for accidental extubation. The decreased level of calcium was a concern in view of neuromuscular function and risk of fractures during positioning. Venous air embolism has been a reported complication of craniosynostosis repair. [1],[2] The inevitable blood loss is another concern in these procedures. Adequate venous access is critical. Embarrassment of venous drainage and lymphatics leads to significant oedema around the cranium in the first 24 hours. Generalised oedema can be minimised by optimising crystalloid and blood administration during the case.

The perioperative management of children who have these congenital malformations requires multidisciplinary care

 
   References Top

1.Kanev PM. Congenital malformations of the skull and meninges. Otolaryngol Clin N Am 2007;40:9-26.  Back to cited text no. 1      
2.Koh JL, Greis H. Perioperative management of pediatric patients with craniosynostosis. Anesthesiology Clin 2007;25:465-81.  Back to cited text no. 2      
3.Bernardy M, Donauer E, Neuenfeldt D. Premature craniosynostosis a retrospective analysis of a series of 52 cases. Acta Neurochirurgica 1994;128:88-100.  Back to cited text no. 3  [PUBMED]    
4.Chesney RW. A new form of rickets during infancy: Phosphate depletion-induced osteopenia due to antacid ingestion. Arch Pediatr Adolesc Med 1998;152:1168-9.  Back to cited text no. 4  [PUBMED]  [FULLTEXT]  
5.Hockley AD, Wake MJ, Goldin H. Surgical management of craniosynostosis. Br J Neurosurg 1988;2:307-14.  Back to cited text no. 5  [PUBMED]    



This article has been cited by
1 A novel multidisciplinary approach toward a better understanding of cranial suture closure: The first evidence of genetic effects in adulthood
Katalin Wolff,E. Hadadi,Z. Vas
American Journal of Human Biology. 2013; 25(6): 835
[Pubmed] | [DOI]
2 Maintaining endotracheal tube cuff pressure at 20 mm Hg to prevent dysphagia after anterior cervical spine surgery; protocol of a double-blind randomised controlled trial
Mark P Arts,Thijs C D Rettig,Jessica de Vries,Jasper F C Wolfs,Bas A inít Veld
BMC Musculoskeletal Disorders. 2013; 14(1)
[Pubmed] | [DOI]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    References

 Article Access Statistics
    Viewed2682    
    Printed83    
    Emailed0    
    PDF Downloaded454    
    Comments [Add]    
    Cited by others 2    

Recommend this journal